datasets笔记:数据处理

0 数据loading

from datasets import load_dataset
dataset = load_dataset("glue", "mrpc", split="train")
dataset[0]
'''
{'sentence1': 'Amrozi accused his brother , whom he called " the witness " , of deliberately distorting his evidence .',
 'sentence2': 'Referring to him as only " the witness " , Amrozi accused his brother of deliberately distorting his evidence .',
 'label': 1,
 'idx': 0}
'''

1排序

sorted_dataset = dataset.sort("label")
sorted_dataset['label'][:10],dataset['label'][:10]
#([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 1, 0, 1, 1, 0, 1, 0, 0])

2 打乱

shuffled_dataset = dataset.shuffle(seed=42)
shuffled_dataset['idx'][:10]
#[3946, 3683, 3919, 485, 2251, 2173, 3936, 1603, 1351, 736]

打乱会创建索引映射,可能会降低性能。如果需要恢复性能,可以调用 flatten_indices()

3 选择


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值