应用霍夫森林预测下一个最佳视角:Recovering 6D Object Pose and Predicting Next-Best-View in the Crowd—2016(笔记)

本文介绍了一种基于霍夫森林的6D物体姿态估计和次最佳视图预测框架。利用深度稀疏自动编码器学习特征,并在霍夫森林中进行分类和回归。通过估计假设的不确定性,确定下一个最佳视点,减少错误检测并提高姿态估计准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

应用霍夫森林预测下一个最佳视角:Recovering 6D Object Pose and Predicting Next-Best-View in the Crowd—2016(笔记)

恢复6D物体姿态,在复杂环境预测下一个最佳视角

文章利用霍夫森林作为潜在分类器实现6D目标检测,以不确定性(熵)减少的方式,将姿态估计问题转换为最佳视角问题,最后以假设检验和联合配准(joint registration and hypotheses verification)进行姿态优化。在这里插入图片描述
关键点匹配、模板匹配、基于小块或像素的特征,以及随机森林分类器等方法,依赖人工设计特征。

点对点方法[10,26]形成另一个代表性类别,其中强调构建点对特征以基于点云构建对象模型。

文章选择多视角匹配预测法,核心在于寻找最佳视角 (熵减少)

2016最先进的霍夫森林特征在文献中,一些最新的6D物体检测方法使用霍夫森林作为其潜在的分类器。

摘要

  1. 文章提出基于单一镜头的6D物体姿态估计和基于霍夫森林的次最佳视图预测的完整框架,霍夫森林是联合执行分类和回归的最先进的物体姿态估计器。
  2. 我们不是使用手动设计的特征,而是a)使用稀疏自动编码器提出从深度不变的补丁中学习的无监督特征,并且b)提供对各种最新特征的广泛评估。
  3. 此外,利用在霍夫森林的叶节点中执行的聚类,我们学会估计其他视图中不确定性的减少,从而制定选择下一个最佳视图的问题。
  4. 为了进一步改进姿态估计,我们提出了一种改进的联合配准和假设验证模块作为拒绝错误检测的最终改进步骤。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值