BM68 矩阵的最小路径和

该博客讨论了一个使用动态规划解决的算法问题,即在给定的n*m矩阵中找到从左上角到右下角的最小路径和。路径上每个单元格的值被累加,要求时间复杂度为O(nm)。博主提供了代码实现,通过比较当前格子左边和上边的值来更新最小路径和,并返回最终结果。示例输入和输出展示了算法的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

描述

给定一个 n * m 的矩阵 a,从左上角开始每次只能向右或者向下走,最后到达右下角的位置,路径上所有的数字累加起来就是路径和,输出所有的路径中最小的路径和。
数据范围:1≤n,m≤500,矩阵中任意值都满足 0≤ai,j≤1000 \le a_{i,j} \le 1000ai,j100
要求:时间复杂度 O(nm)
例如:当输入[[1,3,5,9],[8,1,3,4],[5,0,6,1],[8,8,4,0]]时,对应的返回值为12,
所选择的最小累加和路径如下图所示:
请添加图片描述

示例1
输入:[[1,3,5,9],[8,1,3,4],[5,0,6,1],[8,8,4,0]]
返回值:12

示例2
输入:[[1,2,3],[1,2,3]]
返回值:7

代码

class Solution {
public:
    /**
     * 
     * @param matrix int整型vector<vector<>> the matrix
     * @return int整型
     */
    int minPathSum(vector<vector<int> >& matrix) {
        // write code here
        vector<vector<int>> dp(matrix.size(),vector<int> (matrix[0].size(),0));
        for(int i=0;i<matrix.size();i++){
            for(int j=0;j<matrix[0].size();j++){
                if(i==0&&j==0)
                    dp[i][j]=matrix[i][j];
                else if(i==0&&j!=0)
                    dp[i][j]=matrix[i][j]+dp[i][j-1];
                else if(j==0&&i!=0)
                    dp[i][j]=matrix[i][j]+dp[i-1][j];
                else
                    dp[i][j]=matrix[i][j]+min(dp[i-1][j],dp[i][j-1]);
            }
        }
        return dp[matrix.size()-1][matrix[0].size()-1];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Pmetpord丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值