描述
给定一个 n * m 的矩阵 a,从左上角开始每次只能向右或者向下走,最后到达右下角的位置,路径上所有的数字累加起来就是路径和,输出所有的路径中最小的路径和。
数据范围:1≤n,m≤500,矩阵中任意值都满足 0≤ai,j≤1000 \le a_{i,j} \le 1000≤ai,j≤100
要求:时间复杂度 O(nm)
例如:当输入[[1,3,5,9],[8,1,3,4],[5,0,6,1],[8,8,4,0]]时,对应的返回值为12,
所选择的最小累加和路径如下图所示:
示例1
输入:[[1,3,5,9],[8,1,3,4],[5,0,6,1],[8,8,4,0]]
返回值:12
示例2
输入:[[1,2,3],[1,2,3]]
返回值:7
代码
class Solution {
public:
/**
*
* @param matrix int整型vector<vector<>> the matrix
* @return int整型
*/
int minPathSum(vector<vector<int> >& matrix) {
// write code here
vector<vector<int>> dp(matrix.size(),vector<int> (matrix[0].size(),0));
for(int i=0;i<matrix.size();i++){
for(int j=0;j<matrix[0].size();j++){
if(i==0&&j==0)
dp[i][j]=matrix[i][j];
else if(i==0&&j!=0)
dp[i][j]=matrix[i][j]+dp[i][j-1];
else if(j==0&&i!=0)
dp[i][j]=matrix[i][j]+dp[i-1][j];
else
dp[i][j]=matrix[i][j]+min(dp[i-1][j],dp[i][j-1]);
}
}
return dp[matrix.size()-1][matrix[0].size()-1];
}
};