Python Pandas(6):Pandas JSON

        JSON(JavaScript Object Notation,JavaScript 对象表示法),是存储和交换文本信息的语法,类似 XML。JSON 比 XML 更小、更快,更易解析。Pandas 提供了强大的方法来处理 JSON 格式的数据,支持从 JSON 文件或字符串中读取数据并将其转换为 DataFrame,以及将 DataFrame 转换回 JSON 格式。

操作 方法 说明
从 JSON 文件/字符串读取数据 pd.read_json() 从 JSON 数据中读取并加载为 DataFrame
将 DataFrame 转换为 JSON DataFrame.to_json() 将 DataFrame 转换为 JSON 格式的数据,可以指定结构化方式
支持 JSON 结构化方式 orient 参数 支持多种结构化方式,如 splitrecordscolumns

        Pandas 可以很方便的处理 JSON 数据,本文以 sites.json 为例,内容如下:

[
  {
    "id": "A001",
    "name": "bing",
    "url": "www.bing.com",
    "likes": 61
  },
  {
    "id": "A002",
    "name": "Google",
    "url": "www.google.com",
    "likes": 124
  },
  {
    "id": "A003",
    "name": "淘宝",
    "url": "www.taobao.com",
    "likes": 45
  }
]

1 从 JSON 文件/字符串加载数据

1.1 pd.read_json() - 读取 JSON 数据

        read_json() 用于从 JSON 格式的数据中读取并加载为一个 DataFrame。它支持从 JSON 文件、JSON 字符串或 JSON 网址中加载数据。

df = pd.read_json(
    path_or_buffer,      # JSON 文件路径、JSON 字符串或 URL
    orient=None,         # JSON 数据的结构方式,默认是 'columns'
    dtype=None,          # 强制指定列的数据类型
    convert_axes=True,   # 是否转换行列索引
    convert_dates=True,  # 是否将日期解析为日期类型
    keep_default_na=True # 是否保留默认的缺失值标记
)
参数 说明 默认值
path_or_buffer JSON 文件的路径、JSON 字符串或 URL 必需参数
orient 定义 JSON 数据的格式方式。常见值有 splitrecordsindexcolumnsvalues None(根据文件自动推断)
dtype 强制指定列的数据类型 None
convert_axes 是否将轴转换为合适的数据类型 True
convert_dates
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ywz欧卡

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值