数据清洗是对一些没有用的数据进行处理的过程。很多数据集存在数据缺失、数据格式错误、错误数据或重复数据的情况,如果要使数据分析更加准确,就需要对这些没有用的数据进行处理。数据清洗与预处理的常见步骤:
- 缺失值处理:识别并填补缺失值,或删除含缺失值的行/列。
- 重复数据处理:检查并删除重复数据,确保每条数据唯一。
- 异常值处理:识别并处理异常值,如极端值、错误值。
- 数据格式转换:转换数据类型或进行单位转换,如日期格式转换。
- 标准化与归一化:对数值型数据进行标准化(如 Z-score)或归一化(如 Min-Max)。
- 类别数据编码:将类别变量转换为数值形式,常见方法包括 One-Hot 编码和标签编码。
- 文本处理:对文本数据进行清洗,如去除停用词、词干化、分词等。
- 数据抽样:从数据集中抽取样本,或通过过采样/欠采样处理类别不平衡。
- 特征工程:创建新特征、删除不相关特征、选择重要特征等。
本文使用到的测试数据 property-data.csv 如下:
上表包含了四种空数据:
- n/a
- NA
- —
- na
1 Pandas 清洗空值
如果我们要删除包含空字段的行,可以使用 dropna() 方法,语法格式如下:
DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)
- axis:默认为 0,表示逢空值剔除整行,如果设置参数 axis=1 表示逢空值去掉整列。
- how:默认为 'any' 如果一行(或一列)里任何一个数据有出现 NA 就去掉整行,如果设置 how='all' 一行(或列)都是 NA 才去掉这整行。
- thresh:设置需要多少非空值的数据才可以保留下来的。
- subset:设置想要检查的列。如果是多个列,可以使用列名的 list 作为参数。
- inplace:如果设置 True,将计算得到的值直接覆盖之前的值并返回 None,修改的是源数据。
1.1 isnull() 判断各个单元格是否为空
我们可以通过 isnull() 判断各个单元格是否为空。
import pandas as pd
df = pd.read_csv('property-data.csv')
print(df['NUM_BEDROOMS'])
print(df['NUM_BEDROOMS'].isnull())
以上例子中我们看到 Pandas 没有把 n/a 和 NA 当作空数据,不符合我们要求,我们可以指定空数据类型:
import pandas as pd
missing_values = ["n/a", "na", "--"]
df = pd.read_csv('property-data.csv', na_values=missing_values)
print(df['NUM_BEDROOMS'])
print(df['NUM_BEDROOMS'].isnull())