onnx学习(1)-onnx包加载模型,保存模型到onnx文件

本文介绍了如何使用onnx库加载和保存机器学习模型。通过onnx.load函数可以将模型从.onnx文件加载到Python对象,而通过模型的SerializeToString方法及文件写入操作可将模型序列化并保存为.onnx格式。虽然onnx库没有直接的save函数,但可以通过其序列化接口实现模型的保存。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、加载:load函数可以加载文件到一个模型中,模型可打印;

import onnx
model = onnx.load("D://super_resolution_test.onnx")

2、保存:f=model.SerializeToString()把模型序列化,f此时保存了二进制形式的模型,把f写进文件指针中,就可以把模型保存到onnx文件中了

f = model.SerializeToString()
file = open("D://super_resolution_test.onnx", "wb")
file.write(f)

注:
(1)onnx是有一个save函数可以直接保存模型的,但是写了代码以后提示没有save属性。
我就试着把save函数里面的东西写出来,不知道完整不完整,后面学到了再补充。
(2)onnx加载,保存文件主要靠序列化,加载文件主要靠反序列化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值