1088 三人行 (20 分)

本文解析了一道算法挑战题目,通过分析甲、乙、丙三人的能力值关系,探讨了如何根据数学关系判断强弱并应用孔子的教诲。输入包括个人能力值及两个比例系数,输出则是三人与个人的关系,以此来决定‘从之’或‘改之’。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

子曰:“三人行,必有我师焉。择其善者而从之,其不善者而改之。”

本题给定甲、乙、丙三个人的能力值关系为:甲的能力值确定是 2 位正整数;把甲的能力值的 2 个数字调换位置就是乙的能力值;甲乙两人能力差是丙的能力值的 X 倍;乙的能力值是丙的 Y 倍。请你指出谁比你强应“从之”,谁比你弱应“改之”。

输入格式:

输入在一行中给出三个数,依次为:M(你自己的能力值)、X 和 Y。三个数字均为不超过 1000 的正整数。

输出格式:

在一行中首先输出甲的能力值,随后依次输出甲、乙、丙三人与你的关系:如果其比你强,输出 Cong;平等则输出 Ping;比你弱则输出 Gai。其间以 1 个空格分隔,行首尾不得有多余空格。

注意:如果解不唯一,则以甲的最大解为准进行判断;如果解不存在,则输出 No Solution

输入样例 1:

48 3 7

输出样例 1:

48 Ping Cong Gai

输入样例 2:

48 11 6

输出样例 2:

No Solution

思路:

本题最大难点 :丙的能力值有可能是小数!因为甲是两位整数,所以可以从99-9进行循环。

#include<bits/stdc++.h>
using namespace std;

string rel(int a,double b)
{
    if(a>b) return "Gai";
    else if(a==b) return "Ping";
    else return "Cong";
}

int main()
{
    int m,x,y;
    cin>>m>>x>>y;

    int a,b,z1,z2;
    double z3;
    int f=0;
    for(z1=99;z1>9;z1--)
    {
        z2=(z1%10)*10+z1/10;
        double sub=abs(z1-z2)*1.0/x;
        if(z2==sub*y)
         {
             f=1;
             break;
         }
    }
    if(f==0)
        printf("No Solution");
    else
    {
        z3=z2*1.0/y;
        printf("%d %s %s %s",z1,rel(m,z1).c_str(),rel(m,z2).c_str(),rel(m,z3).c_str());
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值