python操作MySQL——封装增删改查

上一篇:python操作MySQL数据——连接与插入数据-CSDN博客

下一篇:python操作mysql——批量添加csv数据-CSDN博客

import pymysql.cursors
from pymysql.err import OperationalError
from  data.readCsv import Csv_to_lst
import os
import configparser as cparser

base_dir = str(os.path.dirname(os.path.dirname(__file__)))
base_dir = base_dir.replace('\\','/')
file_path = base_dir + "/db_config.ini"
event_Path = base_dir + '/data/event_data.csv'
guest_Path = base_dir + '/data/guest_data.csv'

cf = cparser.ConfigParser()
cf.read(file_path)

host = cf.get("mysqlconf","host")
port = cf.get("mysqlconf","port")
user = cf.get("mysqlconf","user")
password = cf.get("mysqlconf","password")
db = cf.get("mysqlconf","db_name")

class DB:

    def __i
<think>嗯,用户现在想用C++连接MySQL进行CRUD操作,并且要测试接口性能,最后输出测试报告。看来这个任务涉及到开发、测试和文档三部分,需要分步骤解决。首先回顾之前的引用内容,引用[1]提到MySQL事务隔离级别,用户需要实现CRUD,那么事务处理也很重要。引用[2]的SQL统计方式虽然提到ES,但基本SQL语法是相通的,特别是用户后面需要统计QPS。引用[3]的快速开发框架倒是不直接相关。用户特意强调要"尽可能参考上一次问题",但对话历史里是系统指令要求,可能用户指站内引用?当前焦点很明确:C++操作MySQL的完整实现流程、压测工具选型、测试报告框架。注意到用户用中英文混合提问,可能是技术文档习惯。需要特别注意MySQL连接的安全性问题(如防SQL注入),很多初学者容易忽略这点。另外性能测试要关注持续高并发下的稳定性,不仅是峰值QPS。关于C++连接MySQL的方案,首先考虑跨平台的mysql-connector-cpp,安装方式根据不同系统给出示例。操作流程上要覆盖连接池管理——这在高压测时特别重要,避免频繁创建连接的开销。性能测试工具方面,ab虽然简单但只能测HTTP,wrk更高效但同样受限。用户提到的是"API",如果是TCP协议的自定义接口,可能需要手写多线程测试工具。但假设用户开发的是HTTP服务,先推荐主流的Locust和JMeter,给出示例命令方便快速上手。测试报告模板要结构化,包含硬件环境参数(用户可能在不同机器复现测试)、并发梯度设计(建议从低到高阶梯增加)、错误率记录(这点很多报告会遗漏)。图表工具推荐gnuplot是考虑到用户用C++,可能习惯命令行工具。可能用户没明说但隐含的需求:如何部署MySQL优化?但考虑到问题范围,先聚焦在客户端操作和测试层面更合适。如果用户后续追问,可以补充索引优化、查询缓存等建议。相关的问题扩展很有必要,用户下一步可能遇到连接池调优、读写分离实现,或者更复杂的批量操作优化。ORM框架对比虽然热门,但C++领域不像Java有MyBatis这样的标准方案,推荐要谨慎。</think> 以下是用C++操作MySQL实现CRUD及接口压测的完整方案: --- ### **一、C++操作MySQL的CRUD实现** #### 1. **环境准备** ```bash # Ubuntu安装MySQL开发库 sudo apt-get install libmysqlclient-dev ``` ```cmake # CMake配置 find_package(MySQL REQUIRED) target_link_libraries(YourProject PRIVATE MySQL::mysqlclient) ``` #### 2. **封装数据库操作类**(核心代码) ```cpp #include <mysql/mysql.h> #include <iostream> class MySQLDB { public: MySQLDB() : conn(mysql_init(nullptr)) { if (!mysql_real_connect(conn, "localhost", "user", "pass", "db_name", 3306, nullptr, 0)) { std::cerr << "Connection failed: " << mysql_error(conn); } } ~MySQLDB() { mysql_close(conn); } // INSERT示例 bool insertUser(const std::string& name, int age) { std::string sql = "INSERT INTO users (name, age) VALUES ('" + escapeString(name) + "', " + std::to_string(age) + ")"; return execSQL(sql); } // SELECT示例 void getUsers() { if (mysql_query(conn, "SELECT * FROM users")) return; MYSQL_RES* res = mysql_store_result(conn); MYSQL_ROW row; while ((row = mysql_fetch_row(res))) { std::cout << "ID: " << row[0] << ", Name: " << row[1] << ", Age: " << row[2] << "\n"; } mysql_free_result(res); } private: MYSQL* conn; bool execSQL(const std::string& sql) { return mysql_query(conn, sql.c_str()) == 0; } std::string escapeString(const std::string& str) { char* escaped = new char[str.length()*2 + 1]; mysql_real_escape_string(conn, escaped, str.c_str(), str.length()); std::string res(escaped); delete[] escaped; return res; } }; ``` > **关键点**:使用`mysql_real_escape_string()`防SQL注入[^1],连接失败处理需完善 #### 3. **事务处理** ```cpp bool transactionExample() { mysql_query(conn, "START TRANSACTION"); bool success = insertUser("Alice", 30) && insertUser("Bob", 25); mysql_query(conn, success ? "COMMIT" : "ROLLBACK"); return success; } ``` --- ### **二、性能测试工具推荐** 1. **HTTP接口压测** - **wrk**:轻量级HTTP压测工具 ```bash wrk -t12 -c100 -d30s http://api.example.com/users ``` - **Locust**:Python分布式压测框架 ```python from locust import HttpUser, task class ApiUser(HttpUser): @task def get_users(self): self.client.get("/users") ``` 2. **TCP协议测试** - **自定义测试工具**(C++多线程实现) ```cpp // 伪代码:创建N个线程,每个线程循环发送请求并记录时延 std::vector<std::thread> threads; for (int i = 0; i < thread_count; i++) { threads.emplace_back([&]{ auto start = std::chrono::steady_clock::now(); // 调用数据库操作接口 auto duration = std::chrono::steady_clock::now() - start; recordLatency(duration); }); } ``` --- ### **三、测试报告核心结构** ```markdown # 接口性能测试报告 ## 一、测试环境 | 项目 | 配置 | |------------|-------------------| | 服务器 | AWS c5.xlarge 4vCPU | | MySQL版本 | 8.0.28 | | 网络延迟 | <1ms LAN | ## 二、性能指标 | 并发数 | 平均响应(ms) | QPS | 错误率 | 95分位(ms) | |--------|--------------|------|--------|------------| | 50 | 12.3 | 4065 | 0% | 15.2 | | 100 | 25.7 | 3891 | 0.2% | 38.9 | | 200 | 97.4 | 2053 | 1.5% | 212.6 | ## 三、瓶颈分析 1. CPU占用率在200并发时达90%(主要消耗在SQL解析) 2. 连接池满导致超时错误(最大连接数设置为150) ## 四、优化建议 1. 启用数据库连接池(建议大小=并发数×1.2) 2. 添加索引优化慢查询(`EXPLAIN`分析见附件) 3. 升级MySQL配置参数(`innodb_buffer_pool_size`增至8GB) ``` > **注**:QPS计算需排除网络延迟影响,建议在本地测试环境执行[^2] --- ### 相关扩展问题 1. 如何实现C++数据库连接池? 2. 怎样避免MySQL的N+1查询问题? 3. ORM框架(如ODB)相比原生SQL操作的性能差异? 4. 如何监控MySQL实时性能指标(如`SHOW GLOBAL STATUS`)? 5. 分布式压力测试的最佳实践是什么? [^1]: MySQL连接需注意字符集设置,推荐使用`mysql_options(conn, MYSQL_SET_CHARSET_NAME, "utf8mb4")`防止乱码 [^2]: 复杂统计需求可考虑ELK方案,参考站内SQL聚合方式实现[^2]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值