Python 机器学习工具 scikit-learn 的入门使用

本文介绍了如何使用Python的scikit-learn库中的决策树算法进行数据预测,包括安装步骤、训练模型和对单个测试点进行预测的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考文档:https://www.scikitlearn.com.cn/

通过对已有多组数据的训练,从而实现对单个数据的结果预测

安装

pip install -U scikit-learn

Demo

通过使用sklearn包中的决策树DecisionTreeclassifier算法实现简单预测

import sklearn
from sklearn import tree
feature=[[178,1],[155,0],[177,0],[165,0],[169,11,[160,0]] # 训练数据
label=['man','woman','man','woman','man','woman'] # 性别分类
clf=tree.DecisionTreeclassifier() # 分类决策树的分类决策方法
clf=clf.fit(feature,label) # 拟合川训练数据,得到训练模型参数
s1=c1f.predict([[158,0]]) # 对测试点[158,0]进行预测
s2=c1f.pred1ct([[176,1]]) # 对测试点[176,1]进行预测
print('s1=',s1) # 输出预测结果值
print('s2=',s2) # 输出预测结果值
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值