stable diffusion webui 下载和使用civitai中的模型

文章介绍了如何访问C站并下载Deliberate模型,然后详细阐述了如何利用模型提供的提示词生成图像,包括复制提示词、输入正向和负向提示、设置参数以及生成和比较结果的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.网址

C站网址为:https://civitai.com/。注:这里需要科学上网
在这里插入图片描述

2.下载模型

1.选择想要的模型,点击【Download】按钮,这里演示【Deliberate】模型的下载和使用
2.将下载的模型,存放到【/models/Stable-diffusion】目录中
在这里插入图片描述

3.使用模型

1.在模型下载页中,如上图,图片右下角的【i】按钮,点击【Copy Generation Data】即可复制该图片的提示词

a cute kitten made out of metal, (cyborg:1.1), ([tail | detailed wire]:1.3), (intricate details), hdr, (intricate details, hyperdetailed:1.2), cinematic shot, vignette, centered
Negative prompt: (deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, flowers, human, man, woman
Steps: 26, ENSD: 31337, Size: 768x1024, Seed: 1791574510, Model: Deliberate, Sampler: Euler a, CFG scale: 6.5, Model hash: 9aba26abdf

2.将提示词粘贴到【正向提示词】输入框中,点击图中的【箭头】按钮,将C站中的提示词赋值到sd webui中对应的位置中
在这里插入图片描述
3.点击生成,可以看到图片与C站中的一致。

medical mask, victorian era, cinematography, intricately detailed, crafted, meticulous, magnificent, maximum details, extremely hyper aesthetic
Negative prompt: deformed, bad anatomy, disfigured, poorly drawn face, mutation, mutated, extra limb, ugly, disgusting, poorly drawn hands, missing limb, floating limbs, disconnected limbs, malformed hands, blurry, ((((mutated hands and fingers)))), watermark, watermarked, oversaturated, censored, distorted hands, amputation, missing hands, obese, doubled face, double hands, b&w, black and white, sepia, flowers, roses
Steps: 20, ENSD: 31337, Size: 768x1024, Seed: 3030966289, Model: Deliberate, Sampler: DPM++ 2M Karras, CFG scale: 7, Model hash: 9aba26abdf

在这里插入图片描述
在这里插入图片描述
4.再试一张,执行上述1~3步,可以看到生成内容是一致的
在这里插入图片描述

分享到此结束,如果觉得有帮助,就点个赞吧!

### 如何下载安装 Stable-Diffusion-WebUI 模型 #### 准备工作 为了成功安装配置 `Stable-Diffusion-WebUI`,需要完成一系列准备工作。以下是具体的操作指南: 1. **安装 Conda** 需要先安装 Anaconda 或 Miniconda 工具来管理 Python 环境[^3]。 2. **创建 Conda 虚拟环境** 执行以下命令以创建一个新的虚拟环境,并设置所需的 Python 版本: ```bash conda create -n sd-webui python=3.10 conda activate sd-webui ``` 3. **更新 Pip** 更新包管理工具 `pip` 到最新版本以便后续依赖项能够正常安装: ```bash pip install --upgrade pip ``` 4. **安装 CUDA (可选)** 如果设备支持 NVIDIA GPU 加速,则需安装对应版本的 CUDA 库。推荐使用 CUDA 11.8 来兼容大多数 PyTorch 的需求[^3]: ```bash conda install cudatoolkit=11.8 ``` 5. **克隆 Stable-Diffusion-WebUI 仓库** 使用 Git 将项目源码复制到本地目录中: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git cd stable-diffusion-webui ``` 6. **安装依赖库** 安装必要的 Python 包以及指定版本号的 PyTorch: ```bash pip install -r requirements.txt pip install torch==2.1.2 torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 ``` 7. **下载预训练模型** 前往官方资源网站或其他可信站点获取高质量的基础权重文件(`.ckpt` 或 `.safetensors`),并将它们放置于路径 `stable-diffusion-webui/models/Stable-diffusion/` 中[^2][^4]。例如可以从 CivitAI 平台找到合适的选项: ``` https://civitai.com/ ``` 8. **启动 Web UI** 当一切准备就绪之后,在终端执行脚本来初始化服务端口监听器: ```bash python launch.py ``` 成功运行后,默认可以通过浏览器访问地址 `http://localhost:7860` 查看界面[^4]。 --- #### 注意事项 如果遇到任何错误提示,请仔细阅读日志信息排查原因;另外建议定期同步最新的分支提交记录保持功能稳定性安全性: ```bash git pull origin master ``` --- ### 示例代码片段 下面是一个简单的测试脚本用于验证当前环境是否可以加载已有的 checkpoint 文件生成图像样本。 ```python from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler import torch model_id = "./models/Stable-diffusion/my-model.safetensors" pipe = DiffusionPipeline.from_pretrained(model_id, scheduler=DPMSolverMultistepScheduler(), torch_dtype=torch.float16).to("cuda") prompt = "A beautiful landscape with mountains and a lake." image = pipe(prompt=prompt).images[0] image.save("./output/generated_image.png") ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值