概率论与数理统计知识回顾
1.什么是互斥事件?
使用公式描述:P(A∪B)=P(A)+P(B)P(A\cup B)=P(A)+P(B)P(A∪B)=P(A)+P(B);P(A∩B)=0P(A\cap B)=0P(A∩B)=0
举例说明:
A={掷骰子得到点数为1}
B={掷骰子得到点数为2}
A B事件是一个互斥事件,是不可能同时发生的;
2.什么是对立事件
使用公式描述:P(A∪B)=P(A)+P(B)=1P(A\cup B)=P(A)+P(B)=1P(A∪B)=P(A)+P(B)=1;P(A∩B)=0P(A\cap B)=0P(A∩B)=0
举例说明:
A={掷骰子得到奇数}
B={掷骰子得到偶数}
3.互斥事件和对立事件的关系。
答:对立事件一定是互斥事件,互斥事件不一定是对立事件
4.什么是独立事件?
使用公式描述:P(A∩B)=P(A)P(B)P(A\cap B)=P(A)P(B)P(A∩B)=P(A)P(B)
举例说明:掷骰子,第一次为1,不影响第二次掷骰子的结果,因此是一个独立事件;
5.独立事件和互斥事件是什么关系?
答:独立事件和互斥事件没有关系,准确的说,互斥事件一定不是独立事件!
证明:假设A B是互斥事件,且P(B)>0P(A)>0P(B)>0 P(A)>0P(B)>0P(A)>0,则有:P(A∪B)=P(A)+P(B)P(A\cup B)=P(A)+P(B)P(A∪B)=P(A)+P(B);P(A∩B)=0P(A\cap B)=0P(A∩B)=0;
那么假设A B也是独立事件,那么有:P(A∩B)=P(A)P(B)P(A\cap B)=P(A)P(B)P(A∩B)=P(A)P(B),显然是矛盾的,因此独立事件一定不是互斥事件,或者说互斥事件一定不是独立事件。
其实也很好理解,为什么呢?独立事件之间的发生概率是没有影响的,但是互斥事件的中某一个事件发生,其他的事件一定不会发生,因此互斥事件一定不是独立事件。
6.乘法公式
公式描述:P(A∣B)=P(AB)P(B)P(A|B)=\frac {P(AB)} {P(B)}P(A∣B)=P(B)P(AB),即:P(AB)=P(A∣B)P(B)P(AB)=P(A|B)P(B)P(AB)=P(A∣B)P(B)
如果事件是相互独立的,那么P(A∣B)=P(AB)P(B)=P(A)P(A|B)=\frac {P(AB)} {P(B)}=P(A)P(A∣B)=P(B)P(AB)=P(A)
7.全概率公式
公式描述:P(AB)=∑i=1nP(A∣Bi)P(Bi)P(AB)=\sum_{i=1}^n P(A|B_i)P(B_i)P(AB)=∑i=1nP(A∣Bi)P(Bi)
8.贝叶斯公式
公式描述:P(B∣A)=P(A∣B)P(B)∑i=1nP(A∣Bi)P(Bi)P(B|A)=\frac {P(A|B)P(B)} {\sum_{i=1}^n P(A|B_i)P(B_i)}P(B∣A)=∑i=1nP(A∣Bi)P(Bi)P(A∣B)P(B)
贝叶斯公式是为了求解后验概率。
总结,概率统计中的概率公式最好找些题目练习才能深刻的掌握其含义,个人的浅见。