回溯与递归的区别

本文探讨了递归和回溯算法的区别。递归主要用于根据当前状态回溯至上一状态,例如在求解斐波那契数列时。而回溯算法则是在尝试所有可能情况时,当一条路径走不通时返回并尝试其他路径,如解决子集问题。通过子集问题的递归和回溯解法示例,展示了两者在实际应用中的差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

递归算法是为了描述问题的某一状态,必须用到该状态的上一状态,而描述上一状态,又必须用到上一状态的上一状态……这种用自已来定义自己的方法,称为递归定义。比如最出名的一个问题,求斐波那契数列的第i位,如果用递归算法做,就需要不断递归得到前两位的值。

而回溯算法的本质是为了得到可能存在的所有情况,当一个分支走到底之后,就返回顶点继续遍历下一个分支。在这个返回顶点的过程,就需要不断调用自身函数,这里的调用自身函数是为了穷举所有可能的情况。

之前对递归的理解有点狭隘,认为只要是函数调用自身就算递归。所以对于回溯算法来说,回溯的过程函数也会调用自身,就容易将回溯与递归混淆。当然,对于有的特殊的问题,这两者可能没有明确的界限。

我们来具体地看一到题,用递归和回溯两种方法解答,来看看递归和回溯的区别:

子集

给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。

说明:解集不能包含重复的子集。
示例:
输入: nums = [1,2,3]
输出:
[
  [3],
  [1],
  [2],
  [1,2,3],
  [1,3],
  [2,3],
  [1,2],
  []
]

递归:

首先我们来看递归的做法。假设要求数组[1,2,3]的子集,我们需要先求得[1,2]的子集A1,然后向[1,2]子集的每个元素里添加3这个元素,得到的新子集A2,再加上原来的子集A1,即为[1,2,3]的子集。

所以我们开始假设输出子集为空,每一步都向子集添加新的整数,并生成新的子集。

          

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值