朱刘算法(最小树形图)

P4716 【模板】最小树形图

题目

题目描述

给定包含 nn 个结点, mm 条有向边的一个图。试求一棵以结点 rr 为根的最小树形图,并输出最小树形图每条边的权值之和,如果没有以 rr 为根的最小树形图,输出 -1−1。

输入格式

第一行包含三个整数 n,m,rn,m,r,意义同题目所述。

接下来 mm 行,每行包含三个整数 u,v,wu,v,w,表示图中存在一条从 uu 指向 vv 的权值为 ww 的有向边。

输出格式

如果原图中存在以 rr 为根的最小树形图,就输出最小树形图每条边的权值之和,否则输出 -1−1

输入输出样例

输入 #1

4 6 1
1 2 3
1 3 1
4 1 2
4 2 2
3 2 1
3 4 1

输出 #1

3

输入 #2

4 6 3
1 2 3
1 3 1
4 1 2
4 2 2
3 2 1
3 4 1

输出 #2

4

输入 #3

4 6 2
1 2 3
1 3 1
4 1 2
4 2 2
3 2 1
3 4 1

输出 #3

-1

说明/提示

样例 1 解释

最小树形图中包含第 22, 55, 66 三条边,总权值为 1 + 1 + 1 = 31+1+1=3

样例 2 解释

最小树形图中包含第 33, 55, 66 三条边,总权值为 2 + 1 + 1 = 42+1+1=4

样例 3 解释

无法构成最小树形图,故输出 -1−1 。

 

朱刘算法应该是一种贪心算法,就是每次贪心的用每个点边权最小的入边更新答案,如果不行的话就收缩起来找其他的边,直到找出答案。

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 1e5 + 10, INF = 1e9 + 10;

inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}

int N, M, R, fa[MAXN], mn[MAXN], id[MAXN], vis[MAXN];

struct Edge {
    int u, v, w, nxt;
}E[MAXN];
int head[MAXN], num = 1;
inline void AddEdge(int x, int y, int z) {
    E[num] = (Edge) {x, y, z, head[x]}; head[x] = num++;
}

int ZhuLiu() {
    int ans = 0;
    while("attack is a pig") {
        for(int i = 1; i <= N; i++) id[i] = vis[i] = 0, mn[i] = INF; int cnt = 0;
        for(int i = 1; i <= M; i++) if((E[i].u != E[i].v) && (E[i].w < mn[E[i].v])) mn[E[i].v] = E[i].w, fa[E[i].v] = E[i].u;
        int x; mn[R] = 0;//tag 
        for(int i = 1; i <= N; i++) {
            if(mn[i] == INF) return -1; ans += mn[i];
            for(x = i; (!id[x]) && x != R && (vis[x] != i); x = fa[x]) vis[x] = i;
            if(x != R && (!id[x])) {
                id[x] = ++cnt; for(int t = fa[x]; t != x; t = fa[t]) id[t] = cnt;
            }
        }
        if(!cnt) return ans;
        for(int i = 1; i <= N; i++) if(!id[i]) id[i] = ++cnt;
        for(int i = 1; i <= M; i++) {
            int tmp = mn[E[i].v];
            if((E[i].u = id[E[i].u]) != (E[i].v = id[E[i].v])) E[i].w -= tmp;
        }
        N = cnt; R = id[R]; 
    }
    return ans;
}

int main() {
    memset(head, -1, sizeof(head));
    N = read(); M = read(); R = read();
    for(int i = 1; i <= M; i++) {
        int x = read(), y = read(), z = read();
        AddEdge(x, y, z);
    }
    printf("%d", ZhuLiu());
    return 0;
}

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值