P4716 【模板】最小树形图
题目描述
给定包含 nn 个结点, mm 条有向边的一个图。试求一棵以结点 rr 为根的最小树形图,并输出最小树形图每条边的权值之和,如果没有以 rr 为根的最小树形图,输出 -1−1。
输入格式
第一行包含三个整数 n,m,rn,m,r,意义同题目所述。
接下来 mm 行,每行包含三个整数 u,v,wu,v,w,表示图中存在一条从 uu 指向 vv 的权值为 ww 的有向边。
输出格式
如果原图中存在以 rr 为根的最小树形图,就输出最小树形图每条边的权值之和,否则输出 -1−1
输入输出样例
输入 #1
4 6 1
1 2 3
1 3 1
4 1 2
4 2 2
3 2 1
3 4 1
输出 #1
3
输入 #2
4 6 3
1 2 3
1 3 1
4 1 2
4 2 2
3 2 1
3 4 1
输出 #2
4
输入 #3
4 6 2
1 2 3
1 3 1
4 1 2
4 2 2
3 2 1
3 4 1
输出 #3
-1
说明/提示
样例 1 解释
最小树形图中包含第 22, 55, 66 三条边,总权值为 1 + 1 + 1 = 31+1+1=3
样例 2 解释
最小树形图中包含第 33, 55, 66 三条边,总权值为 2 + 1 + 1 = 42+1+1=4
样例 3 解释
无法构成最小树形图,故输出 -1−1 。
朱刘算法应该是一种贪心算法,就是每次贪心的用每个点边权最小的入边更新答案,如果不行的话就收缩起来找其他的边,直到找出答案。
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 1e5 + 10, INF = 1e9 + 10;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M, R, fa[MAXN], mn[MAXN], id[MAXN], vis[MAXN];
struct Edge {
int u, v, w, nxt;
}E[MAXN];
int head[MAXN], num = 1;
inline void AddEdge(int x, int y, int z) {
E[num] = (Edge) {x, y, z, head[x]}; head[x] = num++;
}
int ZhuLiu() {
int ans = 0;
while("attack is a pig") {
for(int i = 1; i <= N; i++) id[i] = vis[i] = 0, mn[i] = INF; int cnt = 0;
for(int i = 1; i <= M; i++) if((E[i].u != E[i].v) && (E[i].w < mn[E[i].v])) mn[E[i].v] = E[i].w, fa[E[i].v] = E[i].u;
int x; mn[R] = 0;//tag
for(int i = 1; i <= N; i++) {
if(mn[i] == INF) return -1; ans += mn[i];
for(x = i; (!id[x]) && x != R && (vis[x] != i); x = fa[x]) vis[x] = i;
if(x != R && (!id[x])) {
id[x] = ++cnt; for(int t = fa[x]; t != x; t = fa[t]) id[t] = cnt;
}
}
if(!cnt) return ans;
for(int i = 1; i <= N; i++) if(!id[i]) id[i] = ++cnt;
for(int i = 1; i <= M; i++) {
int tmp = mn[E[i].v];
if((E[i].u = id[E[i].u]) != (E[i].v = id[E[i].v])) E[i].w -= tmp;
}
N = cnt; R = id[R];
}
return ans;
}
int main() {
memset(head, -1, sizeof(head));
N = read(); M = read(); R = read();
for(int i = 1; i <= M; i++) {
int x = read(), y = read(), z = read();
AddEdge(x, y, z);
}
printf("%d", ZhuLiu());
return 0;
}