【论文速看】DL最新进展20240927-目标检测、Transformer

【目标检测】

[2024小目标检测] A DeNoising FPN With Transformer R-CNN for Tiny Object Detection

论文链接:https://arxiv.org/abs/2406.05755

代码链接:https://github.com/hoiliu-0801/DNTR

尽管计算机视觉领域取得了显著进展,但精确检测微小物体仍然是一个重大挑战,这主要是因为这些物体在图像数据中的像素表示非常微小。这一挑战在地球科学和遥感领域尤为突出,高保真地检测微小物体可以促进从城市规划到环境监测的各种应用。文中提出了一种新的框架,即DeNoising FPN with Trans R-CNN (DNTR),以提升微小物体检测的性能。DNTR由一个易于插入的设计模块DeNoising FPN (DN-FPN)和一个高效的基于Transformer的检测器Trans R-CNN组成。具体来说,特征金字塔网络中的特征融合对于检测多尺度对象非常重要。然而,由于不同尺度特征之间缺乏正则化,融合过程中可能会产生噪声特征。因此,引入了DN-FPN模块,利用对比学习来抑制FPN自上而下路径中每个层级特征的噪声。其次,基于双阶段框架,用新颖的Trans R-CNN检测器替代了过时的R-CNN检测器,以自注意力机制聚焦于微小物体的表示。实验结果表明,DNTR在AI-TOD数据集上的APvt至少比基线提高了17.4%,在VisDrone数据集上的AP至少提高了9.6%。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IRevers

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值