【图像超分、去噪】
[ACM MM 2024] GRFormer: Grouped Residual Self-Attention for Lightweight Single Image Super-Resolution
论文链接:https://arxiv.org/pdf/2408.07484
代码链接:https://github.com/sisrformer/GRFormer
先前的研究表明,减少基于Transformer的单图像超分辨率(SISR)模型(例如SwinIR)的参数开销和计算量通常会导致性能下降
。本文提出了GRFormer,一种高效且轻量级的方法,不仅减少了参数开销和计算量,还大大提高了性能。GRFormer的核心是分组残差自注意力(GRSA),专门针对两个基本组件。首先,它引入了一种新颖的分组残差层(GRL),以取代自注意力中的查询、键和值(QKV)线性层,旨在同时有效地减少参数开销、计算量和性能损失。其次,它整合了一个紧凑的指数空间相对位置偏差(ES-RPB),作为原始相对位置偏差的替代,以提高表示位置信息的能力,同时进一步最小化参数数量。广泛的实验结果表明,GRFormer在 × 2 ×2