【论文速看】DL最新进展20241013-图像超分、去噪、Transformer

【图像超分、去噪】

[ACM MM 2024] GRFormer: Grouped Residual Self-Attention for Lightweight Single Image Super-Resolution

论文链接:https://arxiv.org/pdf/2408.07484

代码链接:https://github.com/sisrformer/GRFormer

先前的研究表明,减少基于Transformer的单图像超分辨率(SISR)模型(例如SwinIR)的参数开销和计算量通常会导致性能下降。本文提出了GRFormer,一种高效且轻量级的方法,不仅减少了参数开销和计算量,还大大提高了性能。GRFormer的核心是分组残差自注意力(GRSA),专门针对两个基本组件。首先,它引入了一种新颖的分组残差层(GRL),以取代自注意力中的查询、键和值(QKV)线性层,旨在同时有效地减少参数开销、计算量和性能损失。其次,它整合了一个紧凑的指数空间相对位置偏差(ES-RPB),作为原始相对位置偏差的替代,以提高表示位置信息的能力,同时进一步最小化参数数量。广泛的实验结果表明,GRFormer在 × 2 ×2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IRevers

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值