【论文速看】DL最新进展20241017-强化学习、图像超分

【强化学习】

[ICRA 2025] Context-Based Meta Reinforcement Learning for Robust and Adaptable Peg-in-Hole Assembly Tasks

论文链接:https://arxiv.org/pdf/2409.16208

代码链接:

在未知环境中进行孔中插销组装是一项具有挑战性的任务,因为机载传感器误差会导致任务参数(如孔的位置和方向)的不确定性和变化。元强化学习(Meta RL)被提出用来解决这一问题,因为它学会了如何快速适应具有不同参数的新任务。然而,以前的方法要么依赖于一个样本效率低下的程序,要么需要人为示范才能在现实世界中完成任务。该工作修改了Meta RL智能体使用的数据,并使用了即使在未校准的相机下也能轻易测量到的简单特征。进一步将Meta RL智能体适配为使用来自力/扭矩传感器的数据,而不是相机,来进行组装,并且只需少量训练数据。最后,本文提出了一种微调方法,能够一致且安全地适应参数与训练任务相差10倍的分布外任务。研究结果表明,所提出的数据修改显著提高了训练和适应的效率,并使智能体能够在具有不同孔位置和方向的任务中达到100%的成功率。在实际机器人上的实验证实了无论是配备相机还是力/扭矩传感器的智能体都能在未知孔位置的任务中实现100%的成功,与其模拟性能相匹配,并验证了该方法的鲁棒性和适用性。与之前在现实世界任务中样本效率低下的适应工作相比,提出的方法样本效率高出10倍。

在这里插入图片描述


[TPAMI 2024

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IRevers

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值