【论文速看】DL最新进展20241024-Transformer、图像超分

【Transformer】

[ECCV 2024] LookupViT: Compressing visual information to a limited number of tokens

机构:google deepmind

论文链接:https://arxiv.org/pdf/2407.12753

代码链接:无

视觉变换器(Vision Transformers, ViT)已成为众多行业级视觉解决方案的默认选择。但是,它们的推理成本对于许多设置来说可能过高,因为它们在每一层计算自注意力,这在token数量上具有二次计算复杂度。另一方面,图像中的空间信息和视频中的时空信息通常是稀疏且冗余的。这项工作引入了LookupViT,旨在利用这种信息稀疏性来降低ViT的推理成本。LookupViT提供了一种新颖的通用视觉变换器块,通过将高分辨率token的信息压缩到固定数量的token进行操作。这些少量压缩后的token经过细致的处理,而高分辨率token则通过计算成本较低的层。这两组token之间的信息共享通过双向交叉注意力机制实现。该方法具有多重优势:(a)易于通过标准高级操作符在标准ML加速器(GPU/TPU)上实现;(b)适用于标准ViT及其变体,因此可推广到各种任务;(c)可以处理不同的标记化和注意力方法。LookupViT还为压缩后的token提供了灵活性,使得单个训练模型中可以实现性能-计算权衡。在多个领域展示了LookupViT的有效性:(a)图像分类(ImageNet-1K和ImageNet-21K);(b)视频分类(Kinetics400和SomethingSomething V2);(c)图像注释(COCO-Captions),使用冻结编码器。LookupViT在这些领域中实现了FLOPs减半,同时保持或提高准确性。此外,LookupViT还在图像分类(ImageNet-C,R,A,O)上表现出开箱即用的鲁棒性和泛化能力,比ViT提高了多达4%。

在这里插入图片描述


[2024] PADRe: AUnifying Polynomial Attention Drop-in Replacement for Efficient Vision Transformer

论文链接:https://arxiv.org/pdf/2407.11306

代码链接:无

本文提出了多项式注意力替代(PADRe),这是一个新颖且统一的框架,旨在替换传统变换器模型中的自注意力机制。值得注意的是,几种最近提出的替代注意力机制,包括Hyena、Mamba、SimA、Conv2Former和Castling-ViT,都可以视为PADRe框架的特定实例。PADRe利用多项式函数,并借鉴了近似理论中的已有成果,提高了计算效率而没有牺牲准确性。PADRe的关键组件包括乘性非线性,通过使用直接、硬件友好的操作如哈达玛积来实现,只产生线性的计算和内存成本。PADRe进一步避免了使用复杂的函数如Softmax,但与传统的自注意力相比保持了相当或更优的准确性。评估了PADRe作为自注意力的直接替代品在不同计算机视觉任务中的有效性。这些任务包括图像分类、基于图像的二维目标检测和三维点云目标检测。实验结果表明,PADRe在替换变换器模型中的自注意力时比传统的自注意力运行显著更快(在服务器GPU和移动NPU上快11倍到43倍),同时保持了类似的准确性

在这里插入图片描述


【图像超分】

[2024] FIPER: Generalizable Factorized Fields for Joint Image Compression and Super-Resolution

论文链接:https://arxiv.org/pdf/2410.18083

代码链接:https://jayisaking.github.io/FIPER/

这项工作提出了一种用于超分辨率(SR)和图像压缩的统一表示方法,称为分解场(Factorized Fields),其动机在于这两项任务之间的共享原则。无论是通过提高分辨率还是重构压缩数据,SISR和图像压缩都需要恢复和保留精细的图像细节。与之前主要关注网络架构的方法不同,提出的方法利用基-系数分解来显式捕捉图像中的多尺度视觉特征和结构组件,解决这两项任务的核心挑战。首先推导出所提SR模型,该模型包括一个可泛化的分解场的系数骨干网和基础Swin Transformer。然后,为了进一步统一这两项任务,利用训练有素的SR模块的强大信息恢复能力作为压缩pipeline中的先验,提高了压缩效率和细节重建效果。此外,引入了一个合并基压缩分支,整合了共享结构,进一步优化了压缩过程。广泛的实验表明,所提的统一表示方法在超分辨率(SR)方面取得了最先进的性能,相比基线在PSNR上平均相对提升了204.4%,在图像压缩方面相比之前的SOTA减少了9.35%的BD-rate。

在这里插入图片描述

在这里插入图片描述


### 基于Transformer图像辨率技术与实现 近年来,随着深度学习的发展,基于Transformer架构的方法逐渐被引入到计算机视觉领域并取得了显著成果。对于图像辨率任务而言,传统的卷积神经网络(CNNs)一直是主流方法,然而由于其局部感受野的局限性,在捕捉全局依赖关系方面存在不足[^1]。 为了克服这一挑战,研究人员提出了利用Transformer来解决图像辨率问题的技术方案。具体来说: #### 图像预处理阶段 在应用Transformer之前,通常会先将高辨率图像为多个固定大小的小块(patches),这些patch会被展平为一维向量作为后续模型输入的一部。这种操作不仅降低了计算成本,还使得自注意力机制能够更高效地运行。 #### 自定义编码器结构设计 针对图像数据特点重新设计适合做super resolution task 的transformer encoder layers 是非常重要的一步 。相比起标准NLP中的text token embeddings , 这里可能还需要考虑位置信息(Positional Encoding),因为像素之间相对距离同样影响最终重建效果的好坏程度 [^2]. 另外一种创新思路则是通过修改multi-head self-attentions (MHSA)内部工作原理, 引入local window based attentions 或者其他形式的空间约束条件 ,从而进一步减少不必要的冗余运算开销 同时保持较好的特征提取能力 。 #### 解码部构建策略探讨 解码过程可以采用类似于U-net那样的skip connection连接方式把低层语义丰富的feature maps 和高层抽象出来的高层次表示结合起来恢复细节纹理 更加精细准确 地还原原始图片内容 以下是Python代码示例展示如何搭建一个简单的Vision Transformer用于图像任务: ```python import torch.nn as nn from einops.layers.torch import Rearrange class PatchEmbedding(nn.Module): def __init__(self, patch_size=16, embed_dim=768): super().__init__() self.patch_embed = nn.Conv2d(3, embed_dim, kernel_size=patch_size, stride=patch_size) self.flatten = Rearrange('b c h w -> b (h w) c') def forward(self,x): x=self.patch_embed(x) x=self.flatten(x) return x def build_vision_transformer(): pass # 实现完整的ViT模型逻辑... ``` 以上仅为框架示意,实际项目开发需依据特定需求调整参数配置以及优化算法性能指标等多方面因素综合考量完成整个流程的设计实施。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IRevers

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值