【论文速看】DL最新进展20241030-小语言模型、目标检测

【小语言模型】

[2024] Small Language Models: Survey, Measurements, and Insights

论文链接:https://arxiv.org/pdf/2409.15790v1

代码链接:https://github.com/UbiquitousLearning/SLM_Survey

尽管小型语言模型(SLMs)在现代智能设备中得到了广泛应用,但与主要用于数据中心和云环境的大型语言模型(LLMs)相比,它们在学术界受到的关注明显较少。虽然研究人员继续改进LLM的能力以追求通用人工智能,SLM研究的目标是使机器智能更易于访问、更经济实惠且更高效地用于日常任务。文中专注于基于Transformer的仅解码器语言模型,参数范围为1亿到50亿,调查了59个最先进的开源SLM,分析了它们在三个轴向的技术创新:架构、训练数据集和训练算法。此外,还评估了它们在各个领域的能力,包括常识推理、情境学习、数学和编程。为了进一步了解它们的设备运行时成本,对它们的推理延迟和内存占用进行了基准测试。通过对基准数据的深入分析,作者提供了有价值的见解,以推进该领域的研究。

在这里插入图片描述


【目标检测】

[ECCV 2024] Plain-Det: A Plain Multi-D

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IRevers

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值