【目标检测】
[2024 遥感目标检测] RSNet: A Light Framework for The Detection of Multi-scale Remote Sensing Targets
机构:上海海事大学
论文链接:https://arxiv.org/pdf/2410.23073v1
代码链接:无
最近在合成孔径雷达(SAR)船只检测领域的发展,深度学习技术在准确性和速度方面取得了显著进展。然而,在复杂背景下检测小型目标仍然是一个重大挑战。为了应对这些困难,本文提出了RSNet,这是一个旨在增强SAR图像中船只检测能力的轻量级框架。RSNet采用了Waveletpool-ContextGuided (WCG) 主干网络,以提高准确性并减少参数数量,同时还采用了Waveletpool-StarFusion (WSF) 头部网络以高效减少参数。此外,一个轻量共享(LS)模块最小化了检测头部的参数负载。在SAR船只检测数据集(SSDD)和高分辨率SAR图像数据集(HRSID)上的实验表明,RSNet在轻量设计和检测性能之间实现了良好的平衡,超越了许多最先进的检测器,在SSDD和HRSID上分别达到了72.5%和67.6%的AP50:95,且仅使用了1.49M个参数。