大数据数据倾斜与数据膨胀的优化与经验总结

大数据 SQL 数据倾斜与数据膨胀的优化与经验总结

本文参考多篇有关大数据的数据倾斜的解决思路,总结作为工作参考使用,引用自 1,大数据 SQL 数据倾斜与数据膨胀的优化与经验总结 2,Hive SQL 优化(解决数据倾斜)

问题描述

数据倾斜

数据倾斜是指在分布式计算时,大量相同的key被分发到同一个reduce节点中。针对某个key值的数据量比较多,会导致该节点的任务数据量远大于其他节点的平均数据量,运行时间远高于其他节点的平均运行时间,拖累了整体SQL 执行时间。其主要原因是key值分布不均导致的Reduce处理数据不均匀。本文将从Map端优化,Reduce端优化和Join端优化三方面给出相应解决方案。

数据膨胀

数据膨胀是指任务的输出条数/数据量级比输入条数/数据量级大很多,如100M的数据作为任务输入,最后输出1T的数据。这种情况不仅运行效率会降低,部分任务节点在运行key值量级过大时,有可能发生资源不足或失败情况。

排查定位篇(重要)

本节主要关注于业务SQL本身引起的长时间运行或者失败,对于集群资源情况,平台故障本身暂不考虑在内。

1.首先检查输入数据量级。与其他天相比有无明显量级变化,是否因为数据量级的问题天然引起任务运行时间过长,如双11,双十二等大促节点。

2.观察执行任务拆分后各个阶段运行时间。与其他天相比有无明显量级变化;在整个执行任务中时间耗时占比情况。

3.最耗时阶段中,观察各个Task的运行情况。Task列表中,观察是否存在某几个Task实例耗时明显比平均耗时更长,是否存在某几个Task实例处理输入/输出数据量级比平均数据量级消费产出更多。

4.根据步骤3中定位代码行数,定位问题业务处理逻辑。

优化篇

(1)数据倾斜

1,Map端优化
1.1 读取数据合并

在数据源读取查询时,动态分区数过多可能造成小文件数过多,每个小文件至少都会作为一个块启动一个Map任务来完成。对于文件数量而言,等于 map数量 * 分区数。对于一个Map任务而言,其初始化的时间可能远远大于逻辑处理时间,因此通过调整Map参数把小文件合并成大文件进行处理,避免造成很大的资源浪费。

1.2 列裁剪

减少使用select * from table语句,过多选择无用列会增加数据在集群上传输的IO开销;对于数据选择,需要加上分区过滤条件进行筛选数据。

1.3 谓词下推

在不影响结果的情况下,尽可能将过滤条件表达式靠近数据源位置,使之提前执行。通过在map端过滤减少数据输出,降低集群IO传输,从而提升任务的性能。

1.4 数据重分布

在Map阶段做聚合时,使用随机分布函数distribute by rand(),控制Map端输出结果的分发,即map端如何拆分数据给reduce端(默认hash算法),打乱数据分布,至少不会在Map端发生数据倾斜。

2,Reduce端优化
2.1 增大 reduce 并行度

计算公式:hashCode(key)% reduce 个数

优点:实现十分简单;

缺点:可能缓解数据倾斜,不一定有效果

2.3 排序优化

Order by为全局排序,当表数据量过大时,性能可能会出现瓶颈;

Sort by为局部排序,确保Reduce任务内结果有序,全局排序不保证;

Distribute by按照指定字段进行Hash分片,把数据划分到不同的Reducer中;

CLUSTER BY:根据指定的字段进行分桶,并在桶内进行排序,可以认为cluster by是distribute by+sort by。

对于排序而言,尝试用distribute by+sort by确保reduce中结果有序,最后在全局有序。

-- 原始脚本
select *
from user_pay_table
where dt = '20221015'
order by amt
limit 500
;

-- 改进脚本
SELECT  *
FROM    user_pay_table
WHERE   dt = '20221015'
DISTRIBUTE BY ( CASE
                   WHEN amt < 100                  THEN 0
                   WHEN amt >= 100 AND age <= 2000 THEN 1
                   ELSE 2
                 END )
 SORT BY amt
LIMIT 500
;
3. Join端优化
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值