manacher算法(仅用于回文)——算法详解

Manacher算法是一种高效查找字符串中最长回文子串的算法。它通过预处理将原字符串转换成新形式,使得奇数和偶数回文串统一处理,并利用已知回文信息减少不必要的比较。该算法的时间复杂度为O(n),优于其他多数算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

算法简介:

manachermanachermanacher算法是一个能够在线性时间内得到一个字符串中最长回文子串的算法,性能比其他的算法,如字符串哈希还要优秀,且不会被造数据卡住。是处理回文串最有效的工具。

算法分析:

1.首先有一个问题,那就是我们如何处理奇数回文串和偶数回文串这两种不同情况。我们可以采取如下处理方式:

  • 假设存在一个字符串strstrstr:abbabbaabbabbaabbabba
  • 将其转化为一个新的字符串sss:$@a@b@b@a@b@b@a@λ@a@b@b@a@b@b@a@λ@a@b@b@a@b@b@a@λ
  • 原则是首尾两个字符不同,和中间的字符也不同(防止出现访问越界),中间所有字符相同。

2.现在我们来观察一下

  • 以我们的s[8]='a',为中心的回文串向右最大拓展长度+1+1+1即为len[8]=8len[8]=8len[8]=8,而回到原字符串,我们知道以str[3]为中心的最大回文字串长度为7=len[8]−17=len[8]-17=len[8]1
  • 以我们的s[5]='#',为中心的回文串向右最大拓展长度+1+1+1即为len[5]=5len[5]=5len[5]=5,而回到原字符串,我们知道以str[1,2]为中心的最大回文字串长度为4=len[5]−14=len[5]-14=len[5]1
    由此可以得到结论,ans=max(len[i]−1)ans=max(len[i]-1)ans=max(len[i]1)

3.下面正式开始manachermanachermanacher算法,上核心代码,假设此时我们已经得到前i−1i-1i1lenlenlen,那么现在来求第iiilenlenlen

len[0]=0;
ll mx=0,ans=0,id=0;//mx,id:前面的所有结果中向右扩展得最多的len和中心
for(ll i=1;i<count1;i++)
{
	if(i<mx)//如果i在最大被拓展的内部,则有两种情况
		len[i]=min(mx-i,len[2*id-i]);
	else//如果不在最大被拓展的内部,则暴力拓展匹配
		len[i]=1;
	while(s[i-len[i]]==s[i+len[i]])//这个循环解释了为什么len表示最右边+1
		len[i]++;
	if(len[i]+i>mx)
	{
		mx=len[i]+i;
		id=i;
		ans=max(ans,len[i]-1);
	}
}

4.我们只分析i<mxi<mxi<mx的情况,因为i>=mxi>=mxi>=mx时很简单,很容易理解。

  • 我们可以找到iii关于ididid的对称点i′=2×id−ii'=2 \times id-ii=2×idi,而len[i′]len[i']len[i]我们是知道的(即红色部分),根据对称性,理想的回文即为绿色部分。

  • 如果i+len[i′]>mxi+len[i']>mxi+len[i]>mx,那么len[i]=mx−ilen[i]=mx-ilen[i]=mxi,因为,超过的部分(紫色+绿色和红色+蓝色)根据关于ididid的对称性可知道是以id为中心的回文串没有拓展到的位置因为mxmxmx就是最大拓展,那就说明不对称,而在mxmxmx以内是满足对称的,所以len[i]=mx−ilen[i]=mx-ilen[i]=mxi

  • 而当i+len[i′]<=mxi+len[i']<=mxi+len[i]<=mx时,显然,这时候以ididid为中心,mxmxmx为半径的字串是对称的,i+len[i′]i+len[i']i+len[i]被包含在这个区间内,而i+len[i]i+len[i]i+len[i]mxmxmx中间部分无法计入答案的原因是,根据对称性,i′i'i无法匹配到,那么iii也无法匹配到。所以len[i]=len[i′]len[i]=len[i']len[i]=len[i]

5.所以综上所述,在i<mxi<mxi<mx时,len[i]=min(mx−i,len[2×id−i])len[i]=min(mx-i,len[2\times id-i])len[i]=min(mxi,len[2×idi])

模板程序:

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>

using namespace std;
typedef long long ll;
const ll maxn=11000010;
char fr[maxn],s[maxn];
ll len[maxn];//len[i]表示以i为中心能扩展的最大回文串的右端+1
int main()
{
	scanf("%s",fr);
	ll frlen=strlen(fr),count1=0;
	s[count1++]='*';
	for(ll i=0;i<frlen;i++)
	{
		s[count1++]='#';
		s[count1++]=fr[i];
	}
	s[count1++]='#';
	s[count1++]='!';
	len[0]=0;
	ll mx=0,ans=0,id=0;
	for(ll i=1;i<count1;i++)
	{
		if(i<mx)
			len[i]=min(mx-i,len[2*id-i]);
		else
			len[i]=1;
		while(s[i-len[i]]==s[i+len[i]])
			len[i]++;
		if(len[i]+i>mx)
		{
			mx=len[i]+i;
			id=i;
			ans=max(ans,len[i]-1);
		}
	}
	printf("%lld",ans);
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值