基于图像处理的目标计数的实现思路

基于图像处理的目标数量的自动计数方法可以对采集到的图像进行处理来实现自动计数,也可以先用采集到的图像减去背景图像从而得到一个差值图像,然后对差值图像进行处理实现计数。无论哪种方式,都需要首先进行目标和背景的分割,并将分割出来的前景进行粘连分割处理,计数的精确度也受到这一过程重要的影响。

大致过程

(一)、 在进行分割之前,关于彩色图像和灰度图像的处理,一般如果原始图像为彩色图像则转化为灰度二值图像,然后在进行分割处理。
(二)、 图像分割方法大致可以分为:
(1) 基于区域的分割方法侧重于利用区域内特征的相似性——典型算法为分水岭算法;
(2) 基于边缘检测的分割方法利用在区域边缘上的像素灰度值的变化比较剧烈这一实际来解决图像分割问题;
(3) 区域与边缘检测相结合的分割方法;
(4) 基于神经网络的分割方法利用神经网络在细粒度特征提取方面的优势,可以挖掘图像本身深层次的细节特征从而更好地分割图像;
(5)基于模糊集理论的分割方法包括模糊阈值分割方法、模糊聚类分割方法和模糊连接度分割方法等。
(三)、最后用形态学处理中的腐蚀运算来解决计数目标之间有粘连以及杂质点混入这些问题。

计数好文

(1)不接壤的目标计数,连通域和查找轮廓都能实现,大致的流程为:二值分割、形态学处理、距离变换、连通区域计算。
基于数字图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值