深度学习自学记录(6)——归一化和BatchNormal的理解
1、标准化与归一化
数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间,或有特定的数据分布。在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。标准化不会改变数据分布。
其中最典型的数据标准化处理就是数据的归一化,即将数据统一映射到[0,1]区间上。
1.1归一化的目的和优势
目的:
1、把数变为(0,1)之间的小数。主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理,更加便捷快速
2、把有量纲表达式变为无量纲表达式。 归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为纯量,便于不同单位或量级的指标能够进行比较和加权
总得来说:归一化的目的就是使得预处理的数据被限定在一定的范围内(比如[0,1]或者[-1,1]),从而消除奇异样本数据导致的不良影响
优势:
1、提升模型的收敛速度
2、提升模型的精度;在涉及到一些距离计算的算法时效果显著,可以让各个特征对结果做出的贡献相同。从经验上说,归一化是让各指标值都处于同一个数量级别上,在数值上有一定比较性,可以大大提高分类器