深度学习自学记录(7)——yolov3的整体流程四大步详细纪录
1、整体流程
YOLO系列是很流行的目标检测模型。现在已经更新到yolov4版本,但最经典的还是yolov3版本,v4可以说是对yolov3的一些列改进手段的最优组合。
yolov3总得来讲可以分为四大模块:
(1)特征提取+yolohead:获得模型的输出y_pre;
(2)y_pre的解码:将y_pre转化为预测结果,得到真实图片上的预测框的位置(Xmin,Xmax,Ymin,Ymax)、框的得分以及目标类别;
(3)真实标签的编码:将标签文件中的真实值转化成与y_pre相同形式的tensor——y_true;
(4)loss值计算:对比y_pre,y_true计算loss值进行训练。
第一部分的过程很简单,对图片进行特征提取并输出一定shape的tensor,本篇博客主要记录一下解码得到预测结果,编码过程以及loss计算的部分。
2、解码得到预测结果
yolo输出的结果中包含三个不同尺度