深度学习自学记录(7)——yolov3的整体流程四大步详细纪录

深度学习自学记录(7)——yolov3的整体流程四大步详细纪录

1、整体流程

YOLO系列是很流行的目标检测模型。现在已经更新到yolov4版本,但最经典的还是yolov3版本,v4可以说是对yolov3的一些列改进手段的最优组合。
yolov3总得来讲可以分为四大模块:
1特征提取+yolohead:获得模型的输出y_pre;
2y_pre的解码:将y_pre转化为预测结果,得到真实图片上的预测框的位置(Xmin,Xmax,Ymin,Ymax)、框的得分以及目标类别;
3真实标签的编码:将标签文件中的真实值转化成与y_pre相同形式的tensor——y_true;
4loss值计算:对比y_pre,y_true计算loss值进行训练。
在这里插入图片描述
第一部分的过程很简单,对图片进行特征提取并输出一定shape的tensor,本篇博客主要记录一下解码得到预测结果编码过程以及loss计算的部分。

2、解码得到预测结果

yolo输出的结果中包含三个不同尺度

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值