【OpenCV实战】基于HSV的颜色分割Python实现(含Python代码)

一周没有更新博客了,这一周的时间内加强了对机器学习和图像处理的学习。学的有点混乱,有必要记录一下。

深度学习可以解决很多问题,但有时候深度学习和图像处理相结合才能有更好的效果:比如,在进行交通信号灯检测时,用目标检测模型确定信号灯位置后,对信号灯进行颜色分割再识别可大大提高准确率。

机器学习领域中有句话:数据和特征决定了模型的上限,而算法只不过是逼近这个上限而已,所以了解机器学习的常用算法,熟悉机器学习中的特征工程是很有必要的。

【OpenCV实战】基于HSV的颜色分割实现(含Python代码)

1、什么是HSV

我们知道RGB颜色模式,通过不同的配比可以形成不同的颜色。HSV也是一种颜色模式,其模型如图所示
在这里插入图片描述
通过图示我们也能够看到,他和RGB颜色模型相似,也是由三个属性决定颜色,H、S、V分别是色彩、深度、明暗,按着图中方向的变化,其对应的颜色也会改变,三者也同样是有取值范围的:

  • H(色调):用角度度量,取值范围为0°~360°
  • S(饱和度):表示颜色接近光谱色的程度。通常取值范围为0%~100%,值越大,颜色越饱和。
  • V(明度):表示颜色明亮的程度,对于光源色,明度值与发光体的光亮度有关;对于物体色,此值和物体的透射比或反射比有关。通常取值范围为0%(黑)到100%(白)。

HSV空间中三个指标相互独立,能够非常直观的表达色彩的明暗,色调,以及鲜艳程度,