题目:给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。
你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。
返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。
示例 1:
输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。
示例 2:
输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 没有交易完成, 所以最大利润为 0。
暴力法
思路1:直接遍历找出max(prices[j]−prices[i])
时间复杂度:O(n^2)。循环运行 n(n−1)/2次。
空间复杂度:O(1)。只使用了常数个变量。
class Solution {
//暴力法
public int maxProfit(int[] prices) {
int len = prices.length;
//有可能不发生教育,初始化为0
int res = 0;
//不交易的情况1
if(len < 2){
return res;
}
//枚举所有的交易
for(int i = 0; i < len - 1; ++i){
for(int j = i + 1; j < len; ++j){
res = Math.max(res, prices[j] - prices[i]);
}
}
return res;
}
}
动态规划(一次遍历)
思路2:首先用一个变量minprice 记录过程中的一个最低价格(这个最低价格会在过程中发生改变)。再用之后的价格减最低价格得到利率,用maxprofit 记录最大的利润。
class Solution {
//动态规划
public int maxProfit(int[] prices) {
//最低价格
int minprice = Integer.MAX_VALUE;
//最高利润
int maxprofit = 0;
int len = prices.length;
for(int i =0; i < len; ++i){
if(prices[i] < minprice){
minprice = prices[i]; //找到一个价格最低点,低谷点
}
else if(prices[i] - minprice > maxprofit){
maxprofit = prices[i] - minprice; //计算最大利润
}
}
return maxprofit;
}
}