算法总结——字符串


本文是在阅读微信公众号《代码随想录》后进行改写学习的

一、反转字符串

leecode 344.反转字符串

编写一个函数,其作用是将输入的字符串反转过来。输入字符串以字符数组 char[] 的形式给出。

不要给另外的数组分配额外的空间,你必须原地修改输入数组、使用 O(1) 的额外空间解决这一问题。

你可以假设数组中的所有字符都是 ASCII 码表中的可打印字符。

示例 1:
输入:[“h”,“e”,“l”,“l”,“o”]
输出:[“o”,“l”,“l”,“e”,“h”]

示例 2:
输入:[“H”,“a”,“n”,“n”,“a”,“h”]
输出:[“h”,“a”,“n”,“n”,“a”,“H”]

大家应该还记得,我们已经讲过了206.反转链表。

在反转链表中,使用了双指针的方法。

那么反转字符串依然是使用双指针的方法,只不过对于字符串的反转,其实要比链表简单一些。

因为字符串也是一种数组,所以元素在内存中是连续分布,这就决定了反转链表和反转字符串方式上还是有所差异的。

如果对数组和链表原理不清楚的同学,可以看这两篇,关于链表,你该了解这些!必须掌握的数组理论知识 。

对于字符串,我们定义两个指针(也可以说是索引下表),一个从字符串前面,一个从字符串后面,两个指针同时向中间移动,并交换元素。

void reverseString(vector<char>& s) {
    for (int i = 0, j = s.size() - 1; i < s.size()/2; i++, j--) {
        swap(s[i],s[j]);
    }
}

循环里只要做交换s[i] 和s[j]操作就可以了,那么我这里使用了swap 这个库函数。大家可以使用。
因为相信大家都知道交换函数如何实现,而且这个库函数仅仅是解题中的一部分, 所以这里使用库函数也是可以的。
swap可以有两种实现。
一种就是常见的交换数值:

int tmp = s[i];
s[i] = s[j];
s[j] = tmp;

一种就是通过位运算:

s[i] ^= s[j];
s[j] ^= s[i];
s[i] ^= s[j];

在字符串相关的题目中,库函数对大家的诱惑力是非常大的,因为会有各种反转,切割取词之类的操作,这也是为什么字符串的库函数这么丰富的原因。
相信大家本着我所讲述的原则来做字符串相关的题目,在选择库函数的角度上会有所原则,也会有所收获。

class Solution {
public:
    void reverseString(vector<char>& s) {
        for (int i = 0, j = s.size() - 1; i < s.size()/2; i++, j--) {
            swap(s[i],s[j]);
        }
    }
};

Python版本

class Solution:
    def reverseString(self, s: List[str]) -> None:
        """
        Do not return anything, modify s in-place instead.
        """
        left, right = 0, len(s) - 1
        while(left < right):
            s[left], s[right] = s[right], s[left]
            left += 1
            right -= 1
            
# 下面的写法更加简洁,但是都是同样的算法
# class Solution:
#     def reverseString(self, s: List[str]) -> None:
#         """
#         Do not return anything, modify s in-place instead.
#         """
          # 不需要判别是偶数个还是奇数个序列,因为奇数个的时候,中间那个不需要交换就可
#         for i in range(len(s)//2):
#             s[i], s[len(s)-1-i] = s[len(s)-1-i], s[i]
#         return s

二、反转字符串II

leecode 541. 反转字符串II

给定一个字符串 s 和一个整数 k,你需要对从字符串开头算起的每隔 2k 个字符的前 k 个字符进行反转。

如果剩余字符少于 k 个,则将剩余字符全部反转。

如果剩余字符小于 2k 但大于或等于 k 个,则反转前 k 个字符,其余字符保持原样。

示例:

输入: s = “abcdefg”, k = 2
输出: “bacdfeg”

这道题目其实也是模拟,实现题目中规定的反转规则就可以了。

一些同学可能为了处理逻辑:每隔2k个字符的前k的字符,写了一堆逻辑代码或者再搞一个计数器,来统计2k,再统计前k个字符。

其实在遍历字符串的过程中,只要让 i += (2 * k),i 每次移动 2 * k 就可以了,然后判断是否需要有反转的区间。

因为要找的也就是每2 * k 区间的起点,这样写,程序会高效很多。

所以当需要固定规律一段一段去处理字符串的时候,要想想在在for循环的表达式上做做文章

class Solution {
public:
    string reverseStr(string s, int k) {
        for (int i = 0; i < s.size(); i += (2 * k)) {
            // 1. 每隔 2k 个字符的前 k 个字符进行反转
            // 2. 剩余字符小于 2k 但大于或等于 k 个,则反转前 k 个字符
            if (i + k <= s.size()) {
                reverse(s.begin() + i, s.begin() + i + k );
                continue;
            }
            // 3. 剩余字符少于 k 个,则将剩余字符全部反转。
            reverse(s.begin() + i, s.begin() + s.size());
        }
        return s;
    }
};

那么我们也可以实现自己的reverse函数,其实和题目344. 反转字符串 道理是一样的。
下面我实现的reverse函数区间是左闭右闭区间,代码如下:

class Solution {
public:
    void reverse(string& s, int start, int end) {
        for (int i = start, j = end; i < j; i++, j--) {
            swap(s[i], s[j]);
        }
    }
    string reverseStr(string s, int k) {
        for (int i = 0; i < s.size(); i += (2 * k)) {
            // 1. 每隔 2k 个字符的前 k 个字符进行反转
            // 2. 剩余字符小于 2k 但大于或等于 k 个,则反转前 k 个字符
            if (i + k <= s.size()) {
                reverse(s, i, i + k - 1);
                continue;
            }
            // 3. 剩余字符少于 k 个,则将剩余字符全部反转。
            reverse(s, i, s.size() - 1);
        }
        return s;
    }
};

Python版本

class Solution(object):
    def reverseStr(self, s, k):
        """
        :type s: str
        :type k: int
        :rtype: str
        """
        from functools import reduce
        # turn s into a list 
        s = list(s)
        
        # another way to simply use a[::-1], but i feel this is easier to understand
        def reverse(s):
            left, right = 0, len(s) - 1
            while left < right:
                s[left], s[right] = s[right], s[left]
                left += 1
                right -= 1
            return s
        
        # make sure we reverse each 2k elements 
        for i in range(0, len(s), 2*k):
            s[i:(i+k)] = reverse(s[i:(i+k)])
        
        # combine list into str.
        return reduce(lambda a, b: a+b, s)

三、替换空格

剑指Offer 05.替换空格

请实现一个函数,把字符串 s 中的每个空格替换成"%20"。

示例 1: 输入:s = “We are happy.”
输出:“We%20are%20happy.”

如果想把这道题目做到极致,就不要只用额外的辅助空间了!
首先扩充数组到每个空格替换成"%20"之后的大小。
然后从后向前替换空格,也就是双指针法,过程如下:
i指向新长度的末尾,j指向旧长度的末尾。

从前向后填充就是O(n^2)的算法了,因为每次添加元素都要将添加元素之后的所有元素向后移动。
其实很多数组填充类的问题,都可以先预先给数组扩容带填充后的大小,然后在从后向前进行操作。

这么做有两个好处:
 不用申请新数组。
 从后向前填充元素,避免了从前先后填充元素要来的 每次添加元素都要将添加元素之后的所有元素向后移动。

class Solution {
public:
    string replaceSpace(string s) {
        int count = 0; // 统计空格的个数
        int sOldSize = s.size();
        for (int i = 0; i < s.size(); i++) {
            if (s[i] == ' ') {
                count++;
            }
        }
        // 扩充字符串s的大小,也就是每个空格替换成"%20"之后的大小
        s.resize(s.size() + count * 2);
        int sNewSize = s.size();
        // 从后先前将空格替换为"%20"
        for (int i = sNewSize - 1, j = sOldSize - 1; j < i; i--, j--) {
            if (s[j] != ' ') {
                s[i] = s[j];
            } else {
                s[i] = '0';
                s[i - 1] = '2';
                s[i - 2] = '%';
                i -= 2;
            }
        }
        return s;
    }
};

时间复杂度:O(n)
空间复杂度:O(1)

字符串是若干字符组成的有限序列,也可以理解为是一个字符数组,但是很多语言对字符串做了特殊的规定,接下来我来说一说C/C++中的字符串。

在C语言中,把一个字符串存入一个数组时,也把结束符 '\0’存入数组,并以此作为该字符串是否结束的标志。

char a[5] = "asd";
for (int i = 0; a[i] != '\0'; i++) {
}

在C++中,提供一个string类,string类会提供 size接口,可以用来判断string类字符串是否结束,就不用’\0’来判断是否结束。

string a = "asd";
for (int i = 0; i < a.size(); i++) {
}

那么vector< char > 和 string 又有什么区别呢?
其实在基本操作上没有区别,但是 string提供更多的字符串处理的相关接口,例如string 重载了+,而vector却没有。
所以想处理字符串,我们还是会定义一个string类型。

Python 版本

class Solution(object):
    def replaceSpace(self, s):
        """
        :type s: str
        :rtype: str
        """
        list_s = list(s)

        # 记录原本字符串的长度
        original_end = len(s)

        # 将空格改成%20 使得字符串总长增长 2n,n为原本空格数量。
        # 所以记录空格数量就可以得到目标字符串的长度
        n_space = 0
        for ss in s:
            if ss == ' ':
                n_space += 1
                
        list_s += ['0'] * 2 * n_space

        # 设置左右指针位置
        left, right = original_end - 1, len(list_s) - 1

        # 循环直至左指针越界
        while left >= 0:
            if list_s[left] == ' ':
                list_s[right] = '0'
                list_s[right - 1] = '2'
                list_s[right - 2] = '%'
                right -= 3
            else:
                list_s[right] = list_s[left]
                right -= 1
            
            left -= 1
        
        # 将list变回str,输出
        s = ''.join(list_s)
        return s

四、翻转字符串里的单词

leecode 151.翻转字符串里的单词

给定一个字符串,逐个翻转字符串中的每个单词。

示例 1:
输入: “the sky is blue”
输出: “blue is sky the”

示例 2:
输入: " hello world! "
输出: “world! hello”
解释: 输入字符串可以在前面或者后面包含多余的空格,但是反转后的字符不能包括。

示例 3:
输入: “a good example”
输出: “example good a”
解释: 如果两个单词间有多余的空格,将反转后单词间的空格减少到只含一个。

一些同学会使用split库函数,分隔单词,然后定义一个新的string字符串,最后再把单词倒序相加,那么这道题题目就是一道水题了,失去了它的意义。
所以这里我还是提高一下本题的难度:不要使用辅助空间,空间复杂度要求为O(1)

不能使用辅助空间之后,那么只能在原字符串上下功夫了。

想一下,我们将整个字符串都反转过来,那么单词的顺序指定是倒序了,只不过单词本身也倒叙了,那么再把单词反转一下,单词不就正过来了。

所以解题思路如下:

 移除多余空格
 将整个字符串反转
 将每个单词反转

举个例子,源字符串为:"the sky is blue "

移除多余空格 : “the sky is blue”
字符串反转:“eulb si yks eht”
单词反转:“blue is sky the”
这样我们就完成了翻转字符串里的单词。

思路很明确了,我们说一说代码的实现细节,就拿移除多余空格来说,一些同学会上来写如下代码:

void removeExtraSpaces(string& s) {
    for (int i = s.size() - 1; i > 0; i--) {
        if (s[i] == s[i - 1] && s[i] == ' ') {
            s.erase(s.begin() + i);
        }
    }
    // 删除字符串最后面的空格
    if (s.size() > 0 && s[s.size() - 1] == ' ') {
        s.erase(s.begin() + s.size() - 1);
    }
    // 删除字符串最前面的空格
    if (s.size() > 0 && s[0] == ' ') {
        s.erase(s.begin());
    }
}

erase操作上面还套了一个for循环,那么以上代码移除冗余空格的代码时间复杂度为O(n^2)。
那么使用双指针法来去移除空格,最后resize(重新设置)一下字符串的大小,就可以做到O(n)的时间复杂度。
那么使用双指针来移除冗余空格代码如下: fastIndex走的快,slowIndex走的慢,最后slowIndex就标记着移除多余空格后新字符串的长度。

void removeExtraSpaces(string& s) {
    int slowIndex = 0, fastIndex = 0; // 定义快指针,慢指针
    // 去掉字符串前面的空格
    while (s.size() > 0 && fastIndex < s.size() && s[fastIndex] == ' ') {
        fastIndex++;
    }
    for (; fastIndex < s.size(); fastIndex++) {
        // 去掉字符串中间部分的冗余空格
        if (fastIndex - 1 > 0
                && s[fastIndex - 1] == s[fastIndex]
                && s[fastIndex] == ' ') {
            continue;
        } else {
            s[slowIndex++] = s[fastIndex];
        }
    }
    if (slowIndex - 1 > 0 && s[slowIndex - 1] == ' ') { // 去掉字符串末尾的空格
        s.resize(slowIndex - 1);
    } else {
        s.resize(slowIndex); // 重新设置字符串大小
    }
}

有的同学可能发现用erase来移除空格,在leetcode上性能也还行。主要是以下几点:

 leetcode上的测试集里,字符串的长度不够长,如果足够长,性能差距会非常明显。
 leetcode的测程序耗时不是很准确的。

此时我们已经实现了removeExtraSpaces函数来移除冗余空格。
还做实现反转字符串的功能,支持反转字符串子区间,这个实现我们分别在344.反转字符串 和541.反转字符串II里已经讲过了。

// 反转字符串s中左闭又闭的区间[start, end]
void reverse(string& s, int start, int end) {
    for (int i = start, j = end; i < j; i++, j--) {
        swap(s[i], s[j]);
    }
}
// 版本一
class Solution {
public:
    // 反转字符串s中左闭又闭的区间[start, end]
    void reverse(string& s, int start, int end) {
        for (int i = start, j = end; i < j; i++, j--) {
            swap(s[i], s[j]);
        }
    }

    // 移除冗余空格:使用双指针(快慢指针法)O(n)的算法
    void removeExtraSpaces(string& s) {
        int slowIndex = 0, fastIndex = 0; // 定义快指针,慢指针
        // 去掉字符串前面的空格
        while (s.size() > 0 && fastIndex < s.size() && s[fastIndex] == ' ') {
            fastIndex++;
        }
        for (; fastIndex < s.size(); fastIndex++) {
            // 去掉字符串中间部分的冗余空格
            if (fastIndex - 1 > 0
                    && s[fastIndex - 1] == s[fastIndex]
                    && s[fastIndex] == ' ') {
                continue;
            } else {
                s[slowIndex++] = s[fastIndex];
            }
        }
        if (slowIndex - 1 > 0 && s[slowIndex - 1] == ' ') { // 去掉字符串末尾的空格
            s.resize(slowIndex - 1);
        } else {
            s.resize(slowIndex); // 重新设置字符串大小
        }
    }

    string reverseWords(string s) {
        removeExtraSpaces(s); // 去掉冗余空格
        reverse(s, 0, s.size() - 1); // 将字符串全部反转
        int start = 0; // 反转的单词在字符串里起始位置
        int end = 0; // 反转的单词在字符串里终止位置
        bool entry = false; // 标记枚举字符串的过程中是否已经进入了单词区间
        for (int i = 0; i < s.size(); i++) { // 开始反转单词
            if (!entry) {
                start = i; // 确定单词起始位置
                entry = true; // 进入单词区间
            }
            // 单词后面有空格的情况,空格就是分词符
            if (entry && s[i] == ' ' && s[i - 1] != ' ') {
                end = i - 1; // 确定单词终止位置
                entry = false; // 结束单词区间
                reverse(s, start, end);
            }
            // 最后一个结尾单词之后没有空格的情况
            if (entry && (i == (s.size() - 1)) && s[i] != ' ' ) {
                end = i;// 确定单词终止位置
                entry = false; // 结束单词区间
                reverse(s, start, end);
            }
        }
        return s;
    }
    
    // 当然这里的主函数reverseWords写的有一些冗余的,可以精简一些,精简之后的主函数为:
    /* 主函数简单写法
    string reverseWords(string s) {
        removeExtraSpaces(s);
        reverse(s, 0, s.size() - 1);
        for(int i = 0; i < s.size(); i++) {
            int j = i;
            // 查找单词间的空格,翻转单词
            while(j < s.size() && s[j] != ' ') j++;
            reverse(s, i, j - 1);
            i = j;
        }
        return s;
    }
    */
};

Python版本

class Solution:
  #1.去除多余的空格
        def trim_spaces(self,s):     
            n=len(s)
            left=0
            right=n-1
        
            while left<=right and s[left]==' ':       #去除开头的空格
                left+=1
            while left<=right and s[right]==' ':        #去除结尾的空格
                right=right-1
            tmp=[]
            while left<=right:                                    #去除单词中间多余的空格
                if s[left]!=' ':
                    tmp.append(s[left])
                elif tmp[-1]!=' ':                                  #当前位置是空格,但是相邻的上一个位置不是空格,则该空格是合理的
                    tmp.append(s[left])
                left+=1
            return tmp
#2.翻转字符数组
        def reverse_string(self,nums,left,right):
            while left<right:
                nums[left], nums[right]=nums[right],nums[left]
                left+=1
                right-=1
            return None
#3.翻转每个单词
        def reverse_each_word(self, nums):
            start=0
            end=0
            n=len(nums)
            while start<n:
                while end<n and nums[end]!=' ':
                    end+=1
                self.reverse_string(nums,start,end-1)
                start=end+1
                end+=1
            return None

#4.翻转字符串里的单词
        def reverseWords(self, s): #测试用例:"the sky is blue"
            l = self.trim_spaces(s)                     #输出:['t', 'h', 'e', ' ', 's', 'k', 'y', ' ', 'i', 's', ' ', 'b', 'l', 'u', 'e'
            self.reverse_string( l,  0, len(l) - 1)   #输出:['e', 'u', 'l', 'b', ' ', 's', 'i', ' ', 'y', 'k', 's', ' ', 'e', 'h', 't']
            self.reverse_each_word(l)               #输出:['b', 'l', 'u', 'e', ' ', 'i', 's', ' ', 's', 'k', 'y', ' ', 't', 'h', 'e']
            return ''.join(l)                                 #输出:blue is sky the

五、左旋转字符串

剑指Offer58-II.左旋转字符串

字符串的左旋转操作是把字符串前面的若干个字符转移到字符串的尾部。请定义一个函数实现字符串左旋转操作的功能。比如,输入字符串"abcdefg"和数字2,该函数将返回左旋转两位得到的结果"cdefgab"。

示例 1:
输入: s = “abcdefg”, k = 2
输出: “cdefgab”

示例 2:
输入: s = “lrloseumgh”, k = 6
输出: “umghlrlose”

限制:
1 <= k < s.length <= 10000

为了让本题更有意义,提升一下本题难度:不能申请额外空间,只能在本串上操作

不能使用额外空间的话,模拟在本串操作要实现左旋转字符串的功能还是有点困难的。

那么我们可以想一下上一题目字符串:花式反转还不够!中讲过,使用整体反转+局部反转就可以实现,反转单词顺序的目的。

这道题目也非常类似,依然可以通过局部反转+整体反转 达到左旋转的目的。

具体步骤为:

反转区间为前n的子串
反转区间为n到末尾的子串
反转整个字符串

最后就可以得到左旋n的目的,而不用定义新的字符串,完全在本串上操作。

例如 :示例1中 输入:字符串abcdefg,n=2

如图:在这里插入图片描述

class Solution {
public:
    string reverseLeftWords(string s, int n) {
        reverse(s.begin(), s.begin() + n);
        reverse(s.begin() + n, s.end());
        reverse(s.begin(), s.end());
        return s;
    }
};

此时我们已经反转好多次字符串了,来一起回顾一下吧。

在这篇文章344.反转字符串 ,第一次讲到反转一个字符串应该怎么做,使用了双指针法。

然后发现541. 反转字符串II ,这里开始给反转加上了一些条件,当需要固定规律一段一段去处理字符串的时候,要想想在在for循环的表达式上做做文章。

后来在151.翻转字符串里的单词 中,要对一句话里的单词顺序进行反转,发现先整体反转再局部反转 是一个很妙的思路。

最后再讲到本题,本题则是先局部反转再 整体反转,与151.翻转字符串里的单词类似,但是也是一种新的思路。

好了,反转字符串一共就介绍到这里,相信大家此时对反转字符串的常见操作已经很了解了。

Python版本

# 方法一:可以使用切片方法
class Solution:
    def reverseLeftWords(self, s: str, n: int) -> str:
        return s[n:] + s[0:n]
    
# 方法二:也可以使用上文描述的方法,有些面试中不允许使用切片,那就使用上文作者提到的方法
# class Solution:
#     def reverseLeftWords(self, s: str, n: int) -> str:
#         s = list(s)
#         s[0:n] = list(reversed(s[0:n]))
#         s[n:] = list(reversed(s[n:]))
#         s.reverse()

#         return "".join(s)


# 时间复杂度:O(n)
# 空间复杂度:O(n),python的string为不可变,需要开辟同样大小的list空间来修改

六、实现 strStr()

leecode 28. 实现 strStr()

实现 strStr() 函数。

给定一个 haystack 字符串和一个 needle 字符串,在 haystack 字符串中找出 needle 字符串出现的第一个位置 (从0开始)。如果不存在,则返回 -1。

示例 1: 输入: haystack = “hello”, needle = “ll” 输出: 2

示例 2: 输入: haystack = “aaaaa”, needle = “bba” 输出: -1

说明: 当 needle 是空字符串时,我们应当返回什么值呢?这是一个在面试中很好的问题。 对于本题而言,当 needle 是空字符串时我们应当返回 0 。这与C语言的 strstr() 以及 Java的 indexOf() 定义相符。

KMP的经典思想就是:当出现字符串不匹配时,可以记录一部分之前已经匹配的文本内容,利用这些信息避免从头再去做匹配

什么是KMP

说到KMP,先说一下KMP这个名字是怎么来的,为什么叫做KMP呢。

因为是由这三位学者发明的:Knuth,Morris和Pratt,所以取了三位学者名字的首字母。所以叫做KMP。

KMP有什么用

KMP主要应用在字符串匹配上。
KMP的主要思想是当出现字符串不匹配时,可以知道一部分之前已经匹配的文本内容,可以利用这些信息避免从头再去做匹配了

所以如何记录已经匹配的文本内容,是KMP的重点,也是next数组肩负的重任

什么是前缀表

写过KMP的同学,一定都写过next数组,那么这个next数组究竟是个啥呢?
next数组就是一个前缀表(prefix table)。
前缀表有什么作用呢?
前缀表是用来回退的,它记录了模式串与主串(文本串)不匹配的时候,模式串应该从哪里开始重新匹配

首先要知道前缀表的任务是当前位置匹配失败,找到之前已经匹配上的位置,在重新匹配,此也意味着在某个字符失配时,前缀表会告诉你下一步匹配中,模式串应该跳到哪个位置。
那么什么是前缀表:记录下标i之前(包括i)的字符串中,有多大长度的相同前缀后缀

最长公共前后缀?

文章中字符串的前缀是指不包含最后一个字符的所有以第一个字符开头的连续子串。
后缀是指不包含第一个字符的所有以最后一个字符结尾的连续子串。
正确理解什么是前缀什么是后缀很重要!
那么网上清一色都说 “kmp 最长公共前后缀” 又是什么回事呢?
我查了一遍 算法导论 和 算法4里KMP的章节,都没有提到 “最长公共前后缀”这个词,也不知道从哪里来了,我理解是用“最长相等前后缀” 更准确一些。
因为前缀表要求的就是相同前后缀的长度。
而最长公共前后缀里面的“公共”,更像是说前缀和后缀公共的长度。这其实并不是前缀表所需要的。
所以字符串a的最长相等前后缀为0。 字符串aa的最长相等前后缀为1。 字符串aaa的最长相等前后缀为2。 等等…。

为什么一定要用前缀表

这就是前缀表那为啥就能告诉我们上次匹配的位置,并跳过去呢?
回顾一下,刚刚匹配的过程在下标5的地方遇到不匹配,模式串是指向f,如图:
在这里插入图片描述
然后就找到了下标2,指向b,继续匹配:如图:在这里插入图片描述
下标5之前这部分的字符串(也就是字符串aabaa)的最长相等的前缀 和 后缀字符串是 子字符串aa ,因为找到了最长相等的前缀和后缀,匹配失败的位置是后缀子串的后面,那么我们找到与其相同的前缀的后面从新匹配就可以了。
所以前缀表具有告诉我们当前位置匹配失败,跳到之前已经匹配过的地方的能力。

如何计算前缀表

接下来就要说一说怎么计算前缀表。
如图:在这里插入图片描述
长度为前1个字符的子串a,最长相同前后缀的长度为0。(注意字符串的前缀是指不包含最后一个字符的所有以第一个字符开头的连续子串;后缀是指不包含第一个字符的所有以最后一个字符结尾的连续子串。)

在这里插入图片描述
的子串aa,最长相同前后缀的长度为1。
在这里插入图片描述
的子串aab,最长相同前后缀的长度为0。

以此类推: 长度为前4个字符的子串aaba,最长相同前后缀的长度为1。 长度为前5个字符的子串aabaa,最长相同前后缀的长度为2。 长度为前6个字符的子串aabaaf,最长相同前后缀的长度为0。

那么把求得的最长相同前后缀的长度就是对应前缀表的元素,如图:
在这里插入图片描述
可以看出模式串与前缀表对应位置的数字表示的就是:下标i之前(包括i)的字符串中,有多大长度的相同前缀后缀。
找到的不匹配的位置, 那么此时我们要看它的前一个字符的前缀表的数值是多少。
为什么要前一个字符的前缀表的数值呢,因为要找前面字符串的最长相同的前缀和后缀。
所以要看前一位的 前缀表的数值。
前一个字符的前缀表的数值是2, 所有把下标移动到下标2的位置继续比配。 可以再反复看一下上面的动画。
最后就在文本串中找到了和模式串匹配的子串了。

前缀表与next数组

很多KMP算法的时间都是使用next数组来做回退操作,那么next数组与前缀表有什么关系呢?
next数组就可以是前缀表,但是很多实现都是把前缀表统一减一(右移一位,初始位置为-1)之后作为next数组。
为什么这么做呢,其实也是很多文章视频没有解释清楚的地方。
其实这并不涉及到KMP的原理,而是具体实现,next数组即可以就是前缀表,也可以是前缀表统一减一(右移一位,初始位置为-1)。
后面我会提供两种不同的实现代码,大家就明白了。

使用next数组来匹配

以下我们以前缀表统一减一之后的next数组来做演示。

有了next数组,就可以根据next数组来 匹配文本串s,和模式串t了。

注意next数组是新前缀表(旧前缀表统一减一了)。

时间复杂度分析

其中n为文本串长度,m为模式串长度,因为在匹配的过程中,根据前缀表不断调整匹配的位置,可以看出匹配的过程是O(n),之前还要单独生成next数组,时间复杂度是O(m)。所以整个KMP算法的时间复杂度是O(n+m)的。
暴力的解法显而易见是O(n * m),所以KMP在字符串匹配中极大的提高的搜索的效率。
为了和力扣题目28.实现strStr保持一致,方便大家理解,以下文章统称haystack为文本串, needle为模式串。
都知道使用KMP算法,一定要构造next数组。

构造next数组

我们定义一个函数getNext来构建next数组,函数参数为指向next数组的指针,和一个字符串。 代码如下:

void getNext(int* next, const string& s)

构造next数组其实就是计算模式串s,前缀表的过程。 主要有如下三步:

 初始化
 处理前后缀不相同的情况
 处理前后缀相同的情况
接下来我们详解详解一下。

1.初始化:
定义两个指针i和j,j指向前缀起始位置,i指向后缀起始位置。
然后还要对next数组进行初始化赋值,如下:

int j = -1;
next[0] = j;

j 为什么要初始化为 -1呢,因为之前说过 前缀表要统一减一的操作仅仅是其中的一种实现,我们这里选择j初始化为-1,下文我还会给出j不初始化为-1的实现代码。

next[i] 表示 i(包括i)之前最长相等的前后缀长度(其实就是j)

所以初始化next[0] = j 。

2.处理前后缀不相同的情况
因为j初始化为-1,那么i就从1开始,进行s[i] 与 s[j+1]的比较。

所以遍历模式串s的循环下标i 要从 1开始,代码如下:

for(int i = 1; i < s.size(); i++) {

如果 s[i] 与 s[j+1]不相同,也就是遇到 前后缀末尾不相同的情况,就要向前回退。
怎么回退呢?
next[j]就是记录着j(包括j)之前的子串的相同前后缀的长度。
那么 s[i] 与 s[j+1] 不相同,就要找 j+1前一个元素在next数组里的值(就是next[j])。
所以,处理前后缀不相同的情况代码如下:

while (j >= 0 && s[i] != s[j + 1]) { // 前后缀不相同了
    j = next[j]; // 向前回退
}

3.处理前后缀相同的情况
如果s[i] 与 s[j + 1] 相同,那么就同时向后移动i 和j 说明找到了相同的前后缀,同时还要将j(前缀的长度)赋给next[i], 因为next[i]要记录相同前后缀的长度。

代码如下:

if (s[i] == s[j + 1]) { // 找到相同的前后缀
    j++;
}
next[i] = j;

最后整体构建next数组的函数代码如下:

void getNext(int* next, const string& s){
    int j = -1;
    next[0] = j;
    for(int i = 1; i < s.size(); i++) { // 注意i从1开始
        while (j >= 0 && s[i] != s[j + 1]) { // 前后缀不相同了
            j = next[j]; // 向前回退
        }
        if (s[i] == s[j + 1]) { // 找到相同的前后缀
            j++;
        }
        next[i] = j; // 将j(前缀的长度)赋给next[i]
    }
}

代码构造next数组的逻辑流程动画如下:在这里插入图片描述
得到了next数组之后,就要用这个来做匹配了。

使用next数组来做匹配

在文本串s里 找是否出现过模式串t。

定义两个下标j 指向模式串起始位置,i指向文本串起始位置。

那么j初始值依然为-1,为什么呢? 依然因为next数组里记录的起始位置为-1。

i就从0开始,遍历文本串,代码如下:

for (int i = 0; i < s.size(); i++) 

接下来就是 s[i] 与 t[j + 1] (因为j从-1开始的) 进行比较。

如果 s[i] 与 t[j + 1] 不相同,j就要从next数组里寻找下一个匹配的位置。

代码如下:

while(j >= 0 && s[i] != t[j + 1]) {
    j = next[j];
}

如果 s[i] 与 t[j + 1] 相同,那么i 和 j 同时向后移动, 代码如下:

if (s[i] == t[j + 1]) {
    j++; // i的增加在for循环里
}

如何判断在文本串s里出现了模式串t呢,如果j指向了模式串t的末尾,那么就说明模式串t完全匹配文本串s里的某个子串了。

本题要在文本串字符串中找出模式串出现的第一个位置 (从0开始),所以返回当前在文本串匹配模式串的位置i 减去 模式串的长度,就是文本串字符串中出现模式串的第一个位置。

代码如下:

if (j == (t.size() - 1) ) {
    return (i - t.size() + 1);
}

那么使用next数组,用模式串匹配文本串的整体代码如下:

int j = -1; // 因为next数组里记录的起始位置为-1
for (int i = 0; i < s.size(); i++) { // 注意i就从0开始
    while(j >= 0 && s[i] != t[j + 1]) { // 不匹配
        j = next[j]; // j 寻找之前匹配的位置
    }
    if (s[i] == t[j + 1]) { // 匹配,j和i同时向后移动
        j++; // i的增加在for循环里
    }
    if (j == (t.size() - 1) ) { // 文本串s里出现了模式串t
        return (i - t.size() + 1);
    }
}

此时所有逻辑的代码都已经写出来了,力扣 28.实现strStr 题目的整体代码如下:
前缀表统一减一 C++代码实现

class Solution {
public:
    void getNext(int* next, const string& s) {
        int j = -1;
        next[0] = j;
        for(int i = 1; i < s.size(); i++) { // 注意i从1开始
            while (j >= 0 && s[i] != s[j + 1]) { // 前后缀不相同了
                j = next[j]; // 向前回退
            }
            if (s[i] == s[j + 1]) { // 找到相同的前后缀
                j++;
            }
            next[i] = j; // 将j(前缀的长度)赋给next[i]
        }
    }
    int strStr(string haystack, string needle) {
        if (needle.size() == 0) {
            return 0;
        }
        int next[needle.size()];
        getNext(next, needle);
        int j = -1; // // 因为next数组里记录的起始位置为-1
        for (int i = 0; i < haystack.size(); i++) { // 注意i就从0开始
            while(j >= 0 && haystack[i] != needle[j + 1]) { // 不匹配
                j = next[j]; // j 寻找之前匹配的位置
            }
            if (haystack[i] == needle[j + 1]) { // 匹配,j和i同时向后移动
                j++; // i的增加在for循环里
            }
            if (j == (needle.size() - 1) ) { // 文本串s里出现了模式串t
                return (i - needle.size() + 1);
            }
        }
        return -1;
    }
};

前缀表(不减一)C++实现

那么前缀表就不减一了,也不右移的,到底行不行呢?
行!
我之前说过,这仅仅是KMP算法实现上的问题,如果就直接使用前缀表可以换一种回退方式,找j=next[j-1] 来进行回退。
主要就是j=next[x]这一步最为关键!
我给出的getNext的实现为:(前缀表统一减一)

void getNext(int* next, const string& s) {
    int j = -1;
    next[0] = j;
    for(int i = 1; i < s.size(); i++) { // 注意i从1开始
        while (j >= 0 && s[i] != s[j + 1]) { // 前后缀不相同了
            j = next[j]; // 向前回退
        }
        if (s[i] == s[j + 1]) { // 找到相同的前后缀
            j++;
        }
        next[i] = j; // 将j(前缀的长度)赋给next[i]
    }
}

此时如果输入的模式串为aabaaf,对应的next为-1 0 -1 0 1 -1。
这里j和next[0]初始化为-1,整个next数组是以 前缀表减一之后的效果来构建的。
那么前缀表不减一来构建next数组,代码如下:

void getNext(int* next, const string& s) {
        int j = 0;
        next[0] = 0;
        for(int i = 1; i < s.size(); i++) {
            while (j > 0 && s[i] != s[j]) { // j要保证大于0,因为下面有取j-1作为数组下标的操作
                j = next[j - 1]; // 注意这里,是要找前一位的对应的回退位置了
            }
            if (s[i] == s[j]) {
                j++;
            }
            next[i] = j;
        }
    }

此时如果输入的模式串为aabaaf,对应的next为 0 1 0 1 2 0,(其实这就是前缀表的数值了)。

那么用这样的next数组也可以用来做匹配,代码要有所改动。

实现代码如下:

class Solution {
public:
    void getNext(int* next, const string& s) {
        int j = 0;
        next[0] = 0;
        for(int i = 1; i < s.size(); i++) {
            while (j > 0 && s[i] != s[j]) {
                j = next[j - 1];
            }
            if (s[i] == s[j]) {
                j++;
            }
            next[i] = j;
        }
    }
    int strStr(string haystack, string needle) {
        if (needle.size() == 0) {
            return 0;
        }
        int next[needle.size()];
        getNext(next, needle);
        int j = 0;
        for (int i = 0; i < haystack.size(); i++) {
            while(j > 0 && haystack[i] != needle[j]) {
                j = next[j - 1];
            }
            if (haystack[i] == needle[j]) {
                j++;
            }
            if (j == needle.size() ) {
                return (i - needle.size() + 1);
            }
        }
        return -1;
    }
};

Python

// 方法一
class Solution:
    def strStr(self, haystack: str, needle: str) -> int:
        a=len(needle)
        b=len(haystack)
        if a==0:
            return 0
        next=self.getnext(a,needle)
        p=-1
        for j in range(b):
            while p>=0 and needle[p+1]!=haystack[j]:
                p=next[p]
            if needle[p+1]==haystack[j]:
                p+=1
            if p==a-1:
                return j-a+1
        return -1

    def getnext(self,a,needle):
        next=['' for i in range(a)]
        k=-1
        next[0]=k
        for i in range(1,len(needle)):
            while (k>-1 and needle[k+1]!=needle[i]):
                k=next[k]
            if needle[k+1]==needle[i]:
                k+=1
            next[i]=k
        return next

// 方法二
class Solution:
    def strStr(self, haystack: str, needle: str) -> int:
        a=len(needle)
        b=len(haystack)
        if a==0:
            return 0
        i=j=0
        next=self.getnext(a,needle)
        while(i<b and j<a):
            if j==-1 or needle[j]==haystack[i]:
                i+=1
                j+=1
            else:
                j=next[j]
        if j==a:
            return i-j
        else:
            return -1

    def getnext(self,a,needle):
        next=['' for i in range(a)]
        j,k=0,-1
        next[0]=k
        while(j<a-1):
            if k==-1 or needle[k]==needle[j]:
                k+=1
                j+=1
                next[j]=k
            else:
                k=next[k]
        return next

七、重复的子字符串

leecode 459.重复的子字符串

给定一个非空的字符串,判断它是否可以由它的一个子串重复多次构成。给定的字符串只含有小写英文字母,并且长度不超过10000。

示例 1:
输入: “abab”
输出: True
解释: 可由子字符串 “ab” 重复两次构成。

示例 2:
输入: “aba”
输出: False

示例 3:
输入: “abcabcabcabc”
输出: True
解释: 可由子字符串 “abc” 重复四次构成。 (或者子字符串 “abcabc” 重复两次构成。)

那么寻找重复子串怎么也涉及到KMP算法了呢?

这里就要说一说next数组了,next 数组记录的就是最长相同前后缀( 字符串:KMP算法精讲 (opens new window) 这里介绍了什么是前缀,什么是后缀,什么又是最长相同前后缀), 如果 next[len - 1] != -1,则说明字符串有最长相同的前后缀(就是字符串里的前缀子串和后缀子串相同的最长长度)。
最长相等前后缀的长度为:next[len - 1] + 1。
数组长度为:len。
如果len % (len - (next[len - 1] + 1)) == 0 ,则说明 (数组长度-最长相等前后缀的长度) 正好可以被 数组的长度整除,说明有该字符串有重复的子字符串。
数组长度减去最长相同前后缀的长度相当于是第一个周期的长度,也就是一个周期的长度,如果这个周期可以被整除,就说明整个数组就是这个周期的循环。
强烈建议大家把next数组打印出来,看看next数组里的规律,有助于理解KMP算法

如图:在这里插入图片描述
next[len - 1] = 7,next[len - 1] + 1 = 8,8就是此时字符串asdfasdfasdf的最长相同前后缀的长度。

(len - (next[len - 1] + 1)) 也就是: 12(字符串的长度) - 8(最长公共前后缀的长度) = 4, 4正好可以被 12(字符串的长度) 整除,所以说明有重复的子字符串(asdf)。

C++代码如下:(这里使用了前缀表统一减一的实现方式)

class Solution {
public:
    void getNext (int* next, const string& s){
        next[0] = -1;
        int j = -1;
        for(int i = 1;i < s.size(); i++){
            while(j >= 0 && s[i] != s[j+1]) {
                j = next[j];
            }
            if(s[i] == s[j+1]) {
                j++;
            }
            next[i] = j;
        }
    }
    bool repeatedSubstringPattern (string s) {
        if (s.size() == 0) {
            return false;
        }
        int next[s.size()];
        getNext(next, s);
        int len = s.size();
        if (next[len - 1] != -1 && len % (len - (next[len - 1] + 1)) == 0) {
            return true;
        }
        return false;
    }
};

前缀表(不减一)的C++代码实现

class Solution {
public:
    void getNext (int* next, const string& s){
        next[0] = 0;
        int j = 0;
        for(int i = 1;i < s.size(); i++){
            while(j > 0 && s[i] != s[j]) {
                j = next[j - 1];
            }
            if(s[i] == s[j]) {
                j++;
            }
            next[i] = j;
        }
    }
    bool repeatedSubstringPattern (string s) {
        if (s.size() == 0) {
            return false;
        }
        int next[s.size()];
        getNext(next, s);
        int len = s.size();
        if (next[len - 1] != 0 && len % (len - (next[len - 1] )) == 0) {
            return true;
        }
        return false;
    }
};

Python:

这里使用了前缀表统一减一的实现方式

class Solution:
    def repeatedSubstringPattern(self, s: str) -> bool:  
        if len(s) == 0:
            return False
        nxt = [0] * len(s)
        self.getNext(nxt, s)
        if nxt[-1] != -1 and len(s) % (len(s) - (nxt[-1] + 1)) == 0:
            return True
        return False
    
    def getNext(self, nxt, s):
        nxt[0] = -1
        j = -1
        for i in range(1, len(s)):
            while j >= 0 and s[i] != s[j+1]:
                j = nxt[j]
            if s[i] == s[j+1]:
                j += 1
            nxt[i] = j
        return nxt

前缀表(不减一)的代码实现

class Solution:
    def repeatedSubstringPattern(self, s: str) -> bool:  
        if len(s) == 0:
            return False
        nxt = [0] * len(s)
        self.getNext(nxt, s)
        if nxt[-1] != 0 and len(s) % (len(s) - nxt[-1]) == 0:
            return True
        return False
    
    def getNext(self, nxt, s):
        nxt[0] = 0
        j = 0
        for i in range(1, len(s)):
            while j > 0 and s[i] != s[j]:
                j = nxt[j - 1]
            if s[i] == s[j]:
                j += 1
            nxt[i] = j
        return nxt
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值