1. 题号和题目名称
378.有序矩阵中第 K 小的元素
2. 题目叙述
给你一个 n x n
矩阵 matrix
,其中每行和每列元素均按升序排序,找到矩阵中第 k
小的元素。
请注意,它是排序后的第 k
小元素,而不是第 k
个不同的元素。
你必须找到一个内存复杂度优于 O(n2)O(n^2)O(n2) 的解决方案。
示例 1:
输入:matrix = [[1,5,9],[10,11,13],[12,13,15]], k = 8
输出:13
解释:矩阵中的元素为 [1,5,9,10,11,12,13,13,15],第 8 小元素是 13
示例 2:
输入:matrix = [[-5]], k = 1
输出:-5
3. 模式识别
本题可采用二分查找的方法来解决。由于矩阵每行每列都是有序的,矩阵中的最小值为左上角元素,最大值为右下角元素,我们可以在这个值域范围内进行二分查找,统计矩阵中小于等于中间值的元素个数,从而缩小查找范围,最终找到第 k
小的元素。
4. 考点分析
- 二分查找:在有序值域内进行二分查找,需要正确设置左右边界、中间值的计算以及查找范围的更新。
- 矩阵元素统计:统计矩阵中小于等于某个值的元素个数,要利用矩阵的有序性进行高效统计。
5. 所有解法
- 暴力解法:将矩阵中所有元素存入一个一维数组,然后对数组进行排序,取第
k
小的元素。时间复杂度为 O(n2log(n2))O(n^2 log(n^2))O(n2log(n2)),空间复杂度为 O(n2)O(n^2)O(