378.有序矩阵中第 K 小的元素

1. 题号和题目名称

378.有序矩阵中第 K 小的元素

2. 题目叙述

给你一个 n x n 矩阵 matrix ,其中每行和每列元素均按升序排序,找到矩阵中第 k 小的元素。
请注意,它是排序后的第 k 小元素,而不是第 k 个不同的元素。

你必须找到一个内存复杂度优于 O(n2)O(n^2)O(n2) 的解决方案。

示例 1

输入:matrix = [[1,5,9],[10,11,13],[12,13,15]], k = 8
输出:13
解释:矩阵中的元素为 [1,5,9,10,11,12,13,13,15],第 8 小元素是 13

示例 2

输入:matrix = [[-5]], k = 1
输出:-5

3. 模式识别

本题可采用二分查找的方法来解决。由于矩阵每行每列都是有序的,矩阵中的最小值为左上角元素,最大值为右下角元素,我们可以在这个值域范围内进行二分查找,统计矩阵中小于等于中间值的元素个数,从而缩小查找范围,最终找到第 k 小的元素。

4. 考点分析

  • 二分查找:在有序值域内进行二分查找,需要正确设置左右边界、中间值的计算以及查找范围的更新。
  • 矩阵元素统计:统计矩阵中小于等于某个值的元素个数,要利用矩阵的有序性进行高效统计。

5. 所有解法

  • 暴力解法:将矩阵中所有元素存入一个一维数组,然后对数组进行排序,取第 k 小的元素。时间复杂度为 O(n2log(n2))O(n^2 log(n^2))O(n2log(n2)),空间复杂度为 O(n2)O(n^2)O(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

请向我看齐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值