【HAN】代码逐句理解三

这篇将开始分析理解 model

首先 base_gattn 是后续模型得基类
这个和 GAT 的一模一样,那就相当于顺便理解了 GAT 🤣

那么,开始吧🧑

1 BaseGAttN

定义了一些方法,loss、training、preshape、confmat 等

loss

def loss(logits, labels, nb_classes, class_weights):
        sample_wts = tf.reduce_sum(tf.multiply(
            tf.one_hot(labels, nb_classes), class_weights), axis=-1)
        xentropy = tf.multiply(tf.nn.sparse_softmax_cross_entropy_with_logits(
            labels=labels, logits=logits), sample_wts)
        return tf.reduce_mean(xentropy, name='xentropy_mean')

把 labels 进行 onehot1 处理,与 class_weights 对应元素相乘2
然后对每行元素求和得到 sample_wts

<
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值