地理空间数据关键概念:解析、区别与联系

目录

前言

一、各概念详细解析

1.1 数字表面模型(Digital Surface Model,DSM)

1.2 数字高程模型(Digital Elevation Model,DEM)

1.3 数字地面模型(Digital Terrain Model,DTM)

1.4 数字正射影像图(Digital Orthophoto Map,DOM)

1.5 不规则三角网(Triangulated Irregular Network,TIN)

1.6 数字栅格地图(Digital Raster Graphic,DRG)

1.7 正射影像(Orthoimage)

1.8 真正射影像(True Ortho)

二、概念间的区别

2.1 DSM 与 DEM 的区别

2.2 DEM 与 DTM 的区别

2.3 DOM 与 DRG 的区别

2.4 DOM 与 True Ortho 的区别

2.5 TIN 与其他模型的区别

三、概念间的联系

3.1 DSM、DEM 与 DTM 的联系

3.2 DOM、True Ortho 与 DEM、DSM 的联系

3.3 TIN 与 DEM、DSM 的联系

3.4 DRG 与其他概念的联系

四、结语


前言

在地理信息科学领域,DSM、DEM、DTM、DOM、TIN、DRG、Orthoimage(正射影像,通常指 DOM)、True Ortho(真正射影像)等概念是理解和处理地理空间数据的基石。它们在测绘、地理信息系统(GIS)、遥感、城市规划、资源管理等众多领域广泛应用,为分析地球表面的地形地貌、地物分布以及进行空间决策提供了重要的数据支持。深入了解这些概念及其相互之间的区别与联系,对于准确运用地理空间数据解决实际问题至关重要。

一、各概念详细解析

1.1 数字表面模型(Digital Surface Model,DSM)

DSM 是对地球表面形态的一种数字化表达,它不仅包含地面的高程信息,还涵盖了地面上所有物体,如建筑物、树木、桥梁等的高度信息。可以将其理解为一个包含了地球表面所有 “表面” 信息的模型。在实际应用中,通过航空摄影测量、激光雷达(LiDAR)等技术获取大量离散点的三维坐标,进而构建出 DSM。例如,在城市三维建模中,DSM 能够精确呈现城市中建筑物的高度与分布,为城市规划者提供直观的城市空间形态信息,有助于评估城市的容积率、日照情况以及景观效果等。

1.2 数字高程模型(Digital Elevation Model,DEM)

DEM 专注于地形表面的高程信息,它是用一组有序数值阵列来表示地面高程的一种实体地面模型,是 DTM 的一个子集。DEM 忽略了地面上的人工建筑物和植被等物体,只反映地形的起伏变化。其数据来源多样,包括野外测量、等高线数字化、卫星遥感以及 LiDAR 数据处理等。在水利工程领域,DEM 可用于分析流域的地形特征,如计算流域面积、平均坡度、河网密度等,为水资源管理、洪水模拟与防洪规划提供基础数据支持。

1.3 数字地面模型(Digital Terrain Model,DTM)

DTM 是对地球表面地形特征的数字化描述,它通过大量的离散点来模拟连续的地面。DTM 中的每个点都具有 x、y 坐标(表示平面位置)以及 z 值(可代表高程、坡度、坡向等地形属性)。DTM 是一个广义的概念,涵盖了各种地形属性的数字模型,而 DEM 是其中专门用于表示地形高程的模型。DTM 在道路工程中应用广泛,例如在道路选线阶段,通过分析 DTM 数据,可以评估不同路线方案的工程难度、土石方量等,从而选择最优路线。

1.4 数字正射影像图(Digital Orthophoto Map,DOM)

DOM 是利用 DEM 对经过扫描处理的数字化航空像片或遥感影像(单色或彩色),经过逐像元的辐射改正、微分纠正和镶嵌,并按规定图幅范围裁剪生成的影像数据,同时带有公里格网、图廓(内、外)整饰和注记的平面图。它整合了影像的直观性和地图的几何精度,消除了因地形起伏和影像倾斜产生的变形,使影像上的地物位置和实际地理坐标具有准确的对应关系。在土地利用调查中,DOM 能够清晰地展示不同土地利用类型的分布,帮助工作人员快速识别和分类耕地、林地、建设用地等。

1.5 不规则三角网(Triangulated Irregular Network,TIN)

TIN 是一种矢量数据结构,用于表示地形表面。它由一系列相互连接的三角形组成,这些三角形的顶点是离散的地形采样点。TIN 的构建原则是尽量使每个三角形的内角接近 60°,以保证地形表达的准确性和稳定性。TIN 的优势在于能够根据地形的复杂程度自适应地调整三角形的大小和形状,在地形变化剧烈的区域,三角形会更小、更密集,从而精确地表示地形细节;而在地形相对平坦的区域,三角形则较大、较稀疏,减少数据存储量。在地形分析中,TIN 常用于计算坡度、坡向、可视域分析等,为土地规划、军事地形分析等提供重要支持。

1.6 数字栅格地图(Digital Raster Graphic,DRG)

DRG 是纸质地图的数字化产物,它通过对纸质地图进行扫描、几何纠正、色彩校正等处理,将纸质地图转换为数字图像形式。DRG 保留了纸质地图的外观和内容,包括各种地理要素的符号、注记等,但它本质上是一种栅格数据,不具备矢量数据的可编辑性和精确查询功能。DRG 常用于快速浏览地理信息、作为背景底图与其他地理数据进行叠加分析,或者在一些对数据精度要求不高的场景中作为参考资料,如历史地理研究、初步的区域规划等。

1.7 正射影像(Orthoimage)

通常所说的正射影像就是指 DOM,它是经过几何校正,消除了地形起伏和影像倾斜等因素造成的变形,使影像上的地物位置和形状与实际地理情况具有准确对应关系的遥感影像。正射影像在 GIS 和遥感测绘领域广泛应用,为地物识别、目标定位、地图更新等提供了直观且准确的图像数据。例如,在城市地图更新中,正射影像可以帮助测绘人员快速发现城市中新建或拆除的建筑物,及时更新地图信息。

1.8 真正射影像(True Ortho)

True Ortho(真正射影像,也称为 True Digital Ortho Map,TDOM)是基于数字表面模型(DSM),利用数字微分纠正技术改正原始影像的几何变形得到的影像。与普通正射影像(DOM)相比,真正射影像在处理过程中充分考虑了地物的高度信息。这使得它在处理建筑物密集地区时,能够更好地解决因建筑物高度差异导致的影像变形和遮挡问题,使地物的边缘和细节更加准确清晰。在高精度地图制作、城市三维建模等对影像精度要求极高的领域,真正射影像具有不可替代的优势。

二、概念间的区别

2.1 DSM 与 DEM 的区别

  • 数据内容:DSM 包含地面及地面上所有物体的高度信息,而 DEM 仅关注地形的高程,不包含地面物体,如建筑物、植被等。例如,在城市区域,DSM 会呈现出建筑物的实际高度,而 DEM 则将建筑物所在区域视为平坦的地面,只反映该区域的地形高度。
  • 应用场景:DSM 主要用于需要考虑地物高度的应用,如城市规划中的空间分析、林业中的树木高度估算等;DEM 更侧重于地形分析,如流域水文分析、地形地貌研究等。

2.2 DEM 与 DTM 的区别

  • 概念范畴:DTM 是一个广义的概念,涵盖了各种地形属性的数字模型,而 DEM 是 DTM 中专门用于表示地形高程的模型。DTM 除了高程外,还可以包含坡度、坡向等其他地形属性,而 DEM 仅聚焦于高程信息。
  • 数据用途:DTM 可用于更全面的地形分析和工程应用,如道路选线时综合考虑地形的多个属性;DEM 主要为地形高程相关的分析提供基础数据,如绘制等高线、进行地形可视化等。

2.3 DOM 与 DRG 的区别

  • 数据性质:DOM 是基于影像数据经过几何纠正和处理得到的具有地理坐标的正射影像,具有较高的几何精度和丰富的地物细节;DRG 是纸质地图的数字化图像,虽然保留了地图的外观,但本质上是栅格数据,精度相对较低,且不具备矢量数据的编辑和查询功能。
  • 应用场景:DOM 常用于高精度的地物识别、地理信息提取和空间分析等;DRG 主要用于快速浏览地理信息、作为背景底图或在对精度要求不高的情况下作为参考资料。

2.4 DOM 与 True Ortho 的区别

  • 处理方式:DOM 基于 DEM 进行几何纠正,主要消除地形起伏和影像倾斜带来的变形;True Ortho 基于 DSM 进行处理,不仅考虑地形起伏,还充分考虑地物高度,能够更好地解决建筑物等物体的遮挡和变形问题。
  • 精度与应用场景:True Ortho 在建筑物密集区域的精度更高,地物边缘和细节更准确,适用于高精度地图制作、城市三维建模等对精度要求极高的场景;DOM 精度相对较低,但在一般的地理信息应用、土地利用调查等场景中已能满足需求。

2.5 TIN 与其他模型的区别

  • 数据结构:TIN 是矢量数据结构,由相互连接的三角形组成,能够根据地形复杂程度自适应调整;而 DSM、DEM、DTM 通常以栅格数据形式存储,以规则的网格单元表示地形信息。这种数据结构的差异使得 TIN 在表示地形细节和进行局部地形分析时具有独特优势。
  • 数据存储与处理:TIN 数据存储量相对较小,尤其在地形复杂区域,能有效减少数据冗余;但在进行大规模数据处理和空间分析时,栅格数据结构的 DSM、DEM、DTM 可能更便于进行统一的算法处理。

三、概念间的联系

3.1 DSM、DEM 与 DTM 的联系

  • 继承关系:DEM 是 DTM 的一个子集,专注于地形高程的表达;DSM 则是在 DTM 的基础上,进一步包含了地面物体的高度信息,可视为更详细、全面的 DTM 扩展。
  • 数据转换:在一定条件下,DSM 可以通过去除地面物体的高度信息转换为 DEM,例如通过分类算法识别并去除建筑物、植被等物体的高度值;而从 DEM 出发,结合地物高度信息(如通过地物分类和高度测量获取),可以构建 DSM。同时,DEM 和 DSM 都是构建 DTM 的重要数据来源,通过添加其他地形属性信息,可以将它们扩展为更全面的 DTM。

3.2 DOM、True Ortho 与 DEM、DSM 的联系

  • 处理基础:DOM 的生成依赖于 DEM,通过 DEM 对原始影像进行几何纠正,从而得到正射影像;True Ortho 则基于 DSM 进行处理,利用 DSM 更准确地考虑地物高度,实现更精确的几何纠正。
  • 应用协同:在实际应用中,DOM 和 True Ortho 常与 DEM、DSM 协同使用。例如,在城市三维建模中,首先利用 DEM 或 DSM 构建地形基础,然后将 DOM 或 True Ortho 作为纹理映射到三维模型上,使模型更加真实、直观。同时,通过分析 DOM 或 True Ortho 中的地物信息,可以进一步完善 DSM 和 DEM 的数据,如识别建筑物轮廓并准确测量其高度,用于更新 DSM 和 DEM。

3.3 TIN 与 DEM、DSM 的联系

  • 构建关系:TIN 可以基于 DEM 或 DSM 的离散点数据构建。在构建 TIN 时,从 DEM 或 DSM 中提取离散的高程点,然后通过三角剖分算法将这些点连接成三角形网络,形成 TIN。这种转换使得基于栅格数据的 DEM 和 DSM 在某些应用中能够以矢量数据结构的 TIN 形式进行处理,发挥 TIN 在地形分析中的优势。
  • 分析互补:TIN 在地形分析中的结果,如坡度、坡向等,可以反馈到 DEM 和 DSM 数据中,用于进一步完善地形属性信息。同时,DEM 和 DSM 提供的整体地形信息可以帮助优化 TIN 的构建,如在地形平坦区域适当减少 TIN 三角形的密度,提高数据处理效率。

3.4 DRG 与其他概念的联系

  • 基础参考:DRG 作为纸质地图的数字化形式,可作为其他地理空间数据处理和分析的基础参考资料。例如,在进行野外测量或数据采集时,DRG 可以提供初步的地理信息框架,帮助确定测量区域和目标;在构建 DSM、DEM、DTM 等模型时,DRG 上的地形、地物信息可以作为参考,辅助数据的采集和处理。
  • 数据补充:DRG 与 DOM 等影像数据结合使用时,可以相互补充信息。DRG 上的地图符号和注记能够为 DOM 中的地物识别提供辅助信息,而 DOM 的高分辨率影像细节可以帮助更新 DRG 中可能过时或不准确的地理信息。

四、结语

DSM、DEM、DTM、DOM、TIN、DRG、Orthoimage(正射影像,通常指 DOM)、True Ortho 等概念在地理空间数据领域各自扮演着独特的角色。它们之间既有明显的区别,又存在紧密的联系。深入理解这些概念及其相互关系,有助于我们根据不同的应用需求,选择合适的数据类型和处理方法,充分发挥地理空间数据的价值,为地理信息科学相关领域的研究、规划和决策提供有力支持。随着技术的不断发展,这些概念在实际应用中的协同和融合将更加紧密,推动地理空间数据的应用迈向更高水平

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小李也疯狂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值