(数据结构)图——图、顶点、无向边、无向图、有向边、有向图、简单图、无向完全图、有向完全图、稀疏图、稠密图、权、网、子图的相关概念

本文介绍了图的基本概念,包括无向边、无向图、有向边、有向图、简单图以及无向完全图和有向完全图的定义。还探讨了稀疏图和稠密图的区别,并提到了图中的权和子图的相关内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图的定义:
图是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为:G(V,E)。
其中:G表示一个图,V是图G中顶点的集合,E是图G中边的集合。


注意:
1、线性表中我们把数据元素称为元素;树中将数据元素称为结点;在图中数据元素称为顶点。
2、线性表中可以没有数据元素,称为空表;树中可以没有结点,称为空树;在图中不允许没有顶点。在定义中,若V是顶点的集合,则强调了顶点集合V有穷非空。
3、线性表中,相邻的数据元素之间具有线性关系;树结构中,相邻两层的结点具有层次关系;在图中,任意两个顶点之间都有可能有关系,顶点之间的逻辑关系用边来表示,边集可以是空的。


无向边若顶点Vi到Vj之间的边没有方向,则称这条边为无向边,用无序偶对(Vi,Vj)来表示。
无向图图中任意两个顶点之间的边都是无向边。

举个例子:
G1=(V1,{E1}),其中顶点集合V1={A,B,C,D},边集合E1={(A,B),(B,C),(C,D),(D,A),(A,C)},由于是无方向的,连接顶点A与D的边,可以表示成无序对(A,D),也可以写成(D,A)。

有向边若顶点Vi到Vj之间的边有方向,则称这条边为有向边,也称为弧,用有序偶对(Vi,Vj)来表示,Vi称为弧尾,Vj称为弧头。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小黄TimTim仔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值