图的定义:
图是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为:G(V,E)。
其中:G表示一个图,V是图G中顶点的集合,E是图G中边的集合。
注意:
1、线性表中我们把数据元素称为元素;树中将数据元素称为结点;在图中数据元素称为顶点。
2、线性表中可以没有数据元素,称为空表;树中可以没有结点,称为空树;在图中不允许没有顶点。在定义中,若V是顶点的集合,则强调了顶点集合V有穷非空。
3、线性表中,相邻的数据元素之间具有线性关系;树结构中,相邻两层的结点具有层次关系;在图中,任意两个顶点之间都有可能有关系,顶点之间的逻辑关系用边来表示,边集可以是空的。
无向边:若顶点Vi到Vj之间的边没有方向,则称这条边为无向边,用无序偶对(Vi,Vj)来表示。
无向图:图中任意两个顶点之间的边都是无向边。
举个例子:
G1=(V1,{E1}),其中顶点集合V1={A,B,C,D},边集合E1={(A,B),(B,C),(C,D),(D,A),(A,C)},由于是无方向的,连接顶点A与D的边,可以表示成无序对(A,D),也可以写成(D,A)。
有向边:若顶点Vi到Vj之间的边有方向,则称这条边为有向边,也称为弧,用有序偶对(Vi,Vj)来表示,Vi称为弧尾,Vj称为弧头。