Dp-最长上升子序列模板

例题:怪盗基德的滑翔翼 

怪盗基德是一个充满传奇色彩的怪盗,专门以珠宝为目标的超级盗窃犯。

而他最为突出的地方,就是他每次都能逃脱中村警部的重重围堵,而这也很大程度上是多亏了他随身携带的便于操作的滑翔翼。

有一天,怪盗基德像往常一样偷走了一颗珍贵的钻石,不料却被柯南小朋友识破了伪装,而他的滑翔翼的动力装置也被柯南踢出的足球破坏了。

不得已,怪盗基德只能操作受损的滑翔翼逃脱。

假设城市中一共有N幢建筑排成一条线,每幢建筑的高度各不相同。

初始时,怪盗基德可以在任何一幢建筑的顶端。

他可以选择一个方向逃跑,但是不能中途改变方向(因为中森警部会在后面追击)。

因为滑翔翼动力装置受损,他只能往下滑行(即:只能从较高的建筑滑翔到较低的建筑)。

他希望尽可能多地经过不同建筑的顶部,这样可以减缓下降时的冲击力,减少受伤的可能性。

请问,他最多可以经过多少幢不同建筑的顶部(包含初始时的建筑)?

输入格式

输入数据第一行是一个整数K,代表有K组测试数据。

每组测试数据包含两行:第一行是一个整数N,代表有N幢建筑。第二行包含N个不同的整数,每一个对应一幢建筑的高度h,按照建筑的排列顺序给出。

输出格式

对于每一组测试数据,输出一行,包含一个整数,代表怪盗基德最多可以经过的建筑数量。

数据范围

1≤K≤1001≤K≤100,
1≤N≤1001≤N≤100,
0<h<100000<h<10000

输入样例:

3
8
300 207 155 299 298 170 158 65
8
65 158 170 298 299 155 207 300
10
2 1 3 4 5 6 7 8 9 10

输出样例:

6
6
9

 分析:

怪盗基德可以选定一个起点和选定一个方向 ,然后开始跳。从左向右看就是一个最大上升子序列问题,从右向左看也是一个最大上升子序列问题。所以只需要做俩遍最大上升子序列就可以了。

#include <iostream>
#include <algorithm>

using namespace std;
const int N=110;

int a[N];
int f[N];

int n;

int main()
{
    int T;
    cin>>T;
    while(T--)
    {
        cin>>n;
        for(int i=1;i<=n;i++) cin>>a[i];
        
        int res=0;
        //从左向右LIS
        for(int i=1;i<=n;i++)
        {
            f[i]=1;
            for(int j=1;j<i;j++)
                if(a[i]>=a[j])
                    f[i]=max(f[i],f[j]+1);
                    
            res=max(res,f[i]);
        }
        
        //从右向左LIS
        for(int i=n;i;i--)
        {
            f[i]=1;
            for(int j=n;j>i;j--)
                if(a[i]>=a[j])
                f[i]=max(f[i],f[j]+1);
            
            res=max(res,f[i]);
        }
        
        cout<<res<<endl;
    }
    
    return 0;
}

 

### 动态规划解决最长上升子序列问题 对于最长上升子序列(Longest Increasing Subsequence, LIS),可以采用动态规划的方法来解决问题。以下是基于动态规划的核心思想以及其实现方式。 #### 方法一:O(n²) 时间复杂度的动态规划算法 通过定义 `d[i]` 表示以第 `i` 个元素结尾的最长上升子序列长度,我们可以构建如下状态转移方程: 如果存在某个位置 `j` (其中 `j < i` 并且 `a[j] < a[i]`),则有: \[ d[i] = \max(d[i], d[j] + 1) \] 初始状态下,每个位置的最长上升子序列为 1,即 \( d[i] = 1 \),因为单个元素本身就是一个合法的上升子序列[^1]。 下面是该方法的具体实现代码: ```python def lis_dp_n2(arr): n = len(arr) if n == 0: return 0 d = [1] * n # 初始化为1 for i in range(1, n): for j in range(i): if arr[j] < arr[i]: d[i] = max(d[i], d[j] + 1) # 更新最大值 return max(d) # 测试用例 arr = [2, 7, 1, 5, 6, 4, 3, 8, 9] print(lis_dp_n2(arr)) # 输出应为5 ``` 此方法的时间复杂度为 O(n²)。 --- #### 方法二:优化至 O(n log n) 的解决方案 为了进一步降低时间复杂度到 O(n log n),可以引入辅助数组 `g[]` 来记录当前已知的不同长度的上升子序列对应的最小末尾数值。具体来说,每次遇到一个新的数时,将其插入到合适的位置替换掉原有的较大值或者扩展新的长度[^4]。 下面是一个具体的 Python 实现版本: ```python import bisect def lis_optimized(arr): g = [] # 辅助数组用于保存不同长度下的最小可能结束值 for num in arr: pos = bisect.bisect_left(g, num) # 找到num应该放置的位置 if pos >= len(g): # 如果pos超出范围,则说明找到了更长的子序列 g.append(num) else: # 否则更新对应位置上的值 g[pos] = num return len(g) # 测试用例 arr = [2, 7, 1, 5, 6, 4, 3, 8, 9] print(lis_optimized(arr)) # 输出应为5 ``` 这种方法利用了二分查找技术,在保持最优解的同时显著减少了计算量。 --- ### 总结 上述两种方法分别展示了如何使用不同的策略去求解最长上升子序列问题。第一种方法简单易懂但效率较低;而第二种方法虽然逻辑稍显复杂,却极大地提高了运行速度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值