在 n×n的棋盘上放 k 个国王,国王可攻击相邻的 8 个格子,求使它们无法互相攻击的方案总数。
输入格式
共一行,包含两个整数 n 和 k。
输出格式
共一行,表示方案总数,若不能够放置则输出0。
数据范围
1≤n≤101≤n≤10,
0≤k≤n20≤k≤n2
输入样例:
3 2
输出样例:
16
思路:
我们可以发现第i行的状态只与它的前一行的状态有关,因此是一道动态规划的题目,f[i][j][s]:定义为前i行放了j个棋子,第i行的状态是s。因此枚举后面的每一行只有注意与前一行的关系。第i行的状态是a,第i-1行的状态是b,那么它们要满足的条件是a&b==0(同一列不能放),a|b==0(相邻行的斜对角也不能放)。此外,我们还要预处理出来哪些状态是符合条件的,每个状态可以转移到哪些状态,处理完之后就可以用Dp状态计算来做了。
代码:
#include <iostream>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
const int N=12,M=1<<10,K=110;
typedef long long LL;
vector<int> state;
vector<int> head[M];
LL f[N][K][M];
int n,m;
int id[M];
int cnt[M];
//判断该状态是否符合条件
bool check(int state)
{
for(int i=0;i<n;i++)
if((state>>i&1) && (state>>i+1&1))
return false;
return true;
}
//计算每个状态有多少个1
int count(int state)
{
int res=0;
for(int i=0;i<n;i++)
res+=state>>i&1;
return res;
}
int main()
{
cin>>n>>m;
//找到所有符合的状态
for(int i=0;i<1<<n;i++)
if(check(i))
{
state.push_back(i);
cnt[i]=count(i);
}
//找到每个状态可以转移到哪些状态
for(int i=0;i<state.size();i++)
for(int j=0;j<state.size();j++)
{
int a=state[i],b=state[j];
if((a&b)==0 && check(a|b))
{
head[i].push_back(j);
}
}
//初始化,一个棋子没放的集合只有一个
f[0][0][0]=1;
for(int i=1;i<=n+1;i++)
for(int j=0;j<=m;j++)
for(int a=0;a<state.size();a++)
for(int b:head[a])
{
int c=cnt[state[a]];
if(j>=c)
{
f[i][j][a]+=f[i-1][j-c][b]; //前i行,已放j个棋子,第i行状态为a,
}
}
cout<<f[n+1][m][0]<<endl;
return 0;
}