状态压缩模板-骑士

在 n×n的棋盘上放 k 个国王,国王可攻击相邻的 8 个格子,求使它们无法互相攻击的方案总数。

输入格式

共一行,包含两个整数 n 和 k。

输出格式

共一行,表示方案总数,若不能够放置则输出0。

数据范围

1≤n≤101≤n≤10,
0≤k≤n20≤k≤n2

输入样例:

3 2

输出样例:

16

思路:

我们可以发现第i行的状态只与它的前一行的状态有关,因此是一道动态规划的题目,f[i][j][s]:定义为前i行放了j个棋子,第i行的状态是s。因此枚举后面的每一行只有注意与前一行的关系。第i行的状态是a,第i-1行的状态是b,那么它们要满足的条件是a&b==0(同一列不能放),a|b==0(相邻行的斜对角也不能放)。此外,我们还要预处理出来哪些状态是符合条件的,每个状态可以转移到哪些状态,处理完之后就可以用Dp状态计算来做了。

代码:

#include <iostream>
#include <cstring>
#include <algorithm>
#include <vector>

using namespace std;
const int N=12,M=1<<10,K=110;

typedef long long LL;
vector<int> state;
vector<int> head[M];
LL f[N][K][M];
int n,m;
int id[M];
int cnt[M];

//判断该状态是否符合条件
bool check(int state)
{
    for(int i=0;i<n;i++)
        if((state>>i&1) && (state>>i+1&1))
            return false;
    return true;
}

//计算每个状态有多少个1
int count(int state)
{
    int res=0;
    for(int i=0;i<n;i++)
        res+=state>>i&1;
    
    return res;
}

int main()
{
    cin>>n>>m;
    
    //找到所有符合的状态
    for(int i=0;i<1<<n;i++)
        if(check(i))
        {
            state.push_back(i);
            cnt[i]=count(i);
        }
        
    //找到每个状态可以转移到哪些状态
    for(int i=0;i<state.size();i++)
        for(int j=0;j<state.size();j++)
        {
            int a=state[i],b=state[j];
            if((a&b)==0 && check(a|b))
            {
                head[i].push_back(j);
            }
        }
        
    //初始化,一个棋子没放的集合只有一个
    f[0][0][0]=1;
    
    for(int i=1;i<=n+1;i++)
        for(int j=0;j<=m;j++)
            for(int a=0;a<state.size();a++)
                for(int b:head[a])
                {
                    int c=cnt[state[a]];
                    if(j>=c)
                    {
                        f[i][j][a]+=f[i-1][j-c][b]; //前i行,已放j个棋子,第i行状态为a,
                    }
                }
    
    cout<<f[n+1][m][0]<<endl;
    
    return 0;
    
    
}