01背包

01背包问题探讨了如何在给定物品重量和价值的情况下,利用动态规划找到使总价值最大化的物品组合。通过dp矩阵,确定每个状态下的最佳选择,最终找出最优解。边界条件和底层条件的正确设定对于算法的正确运行至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

01背包

0-1 背包问题:给定 n 种物品和一个容量为 C 的背包,物品 i 的重量是 wi,其价值为 vi 。

问:应该如何选择装入背包的物品,使得装入背包中的物品的总价值最大?

更具体的,抽象问题为:

有n个可选项,价值为vi,耗费wi,在总耗费为C的情况下选取,求总价值最大

使用dp[i][j]表示面对第i个可选项,耗费为j时所能取到的最大值,面临的只有两种选择,取当前项,或者不取当前项:
dp[i][j]={ dp[i−1][j],j<wimax(dp[i][j−wi]+vi,dp[i−1][j])j>=wi dp[i][j]=\begin{cases}dp[i-1][j], &\text j<wi \\ max(dp[i][j-wi]+vi,dp[i-1][j]) &\text j>=wi \end{cases} dp[i][j]={ dp[i1][j],

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值