链接:https://ac.nowcoder.com/acm/contest/15/A?&headNav=acm
来源:牛客网
A 给定一棵n个点的树,问其中有多少条长度为偶数的路径。路径的长度为经过的边的条数。x到y与y到x被视为同一条路径。路径的起点与终点不能相同。
思路很简单,dfs 我们需要记录图的深度,所谓边的长度就是图的深度,一个奇数深度的点到另一个奇数深度的点距离必然是偶数,同时一个偶数深度的点到另一个偶数深度的点的距离也是偶数,所以,直接dfs数据不大,可以跑完。
以下为 AC 代码
#include<bits/stdc++.h>
using namespace std;
#define ll long long int
inline int read()
{
ll X=0,w=0; char ch=0;
while(!isdigit(ch)) {w|=ch=='-';ch=getchar();}
while(isdigit(ch)) X=(X<<3)+(X<<1)+(ch^48),ch=getchar();
return w?-X:X;
}
const int maxn = 1e5+5;
const int maxm = 1e4+5;
const int INF = 0x3f3f3f3f;
struct node
{
int to,nxt;
}ed[maxn*30];
int head[maxn],tot;
inline void add(int a,int b)
{
ed[++tot].to = b; ed[tot].nxt = head[a]; head[a] = tot;
}
ll ans, sum1, sum2;
void dfs(int u,int fa,int dep)
{
if(dep % 2 == 1)
ans += sum1++;
else
ans += sum2++;
for(int i=head[u];~i;i=ed[i].nxt)
{
int t = ed[i].to;
if(t != fa)
dfs(t, u, dep+1);
}
}
int main()
{
int n = read();
memset(head, -1, sizeof head);
tot = 0;
for(int i=1;i<n;i++)
{
int a=read(), b=read();
add(a,b);
add(b,a);
}
ans = 0;
sum1 = sum2 = 0;
dfs(1, -1, 0);
printf("%lld\n",ans);
return 0;
}
B 给定一个长度为n的整数数组,问有多少对互不重叠的非空区间,使得两个区间内的数的异或和为0。
我们首先要知道 两个数异或为0 那么这两个数必定相等
而且异或 [ l , r ] 能靠前缀和解决,前 1 - r 和 1 - l 部门异或必定为 0 对方不会造成影响。
所以只需要枚举第一个区间右端点就好了。之后可以开一个 vis 数组记录第一个区间异或结果,然后再去看第二个区间异或的和的vis数组是否有计数就好了。
以下是AC 代码
#include<bits/stdc++.h>
using namespace std;
#define ll long long int
inline int read()
{
ll X=0,w=0; char ch=0;
while(!isdigit(ch)) {w|=ch=='-';ch=getchar();}
while(isdigit(ch)) X=(X<<3)+(X<<1)+(ch^48),ch=getchar();
return w?-X:X;
}
const int maxn = 1e5+5;
const int maxm = 1e4+5;
const int INF = 0x3f3f3f3f;
int num[maxn];
int sum[maxn];
int vis[100005];
int main()
{
int n = read();
ll ans = 0;
memset(sum, 0, sizeof sum);
memset(vis, 0, sizeof vis);
for(int i=1;i<=n;i++)
{
sum[i] = read();
sum[i] ^= sum[i-1];
}
for(int i=1;i<=n;i++)
{
for(int j=i;j<=n;j++)
ans += vis[sum[i-1]^sum[j]];
for(int j=1;j<=i;j++)
vis[sum[j-1]^sum[i]] ++;
}
printf("%lld\n",ans);
return 0;
}