文章信息
摘要
然而,对于图卷积如何影响聚类性能以及如何正确地使用它来优化不同图的性能的了解有限。现有的方法本质上使用固定的低阶的图卷积,只考虑每个节点几跳内的邻居,没有充分利用节点关系,忽略了图的多样性。
本文提出了一种自适应图卷积方法,该方法利用高阶图卷积来捕获全局聚类结构,并自适应地为不同的图选择合适的顺序。
1. introduction
虽然图卷积在整合结构和特征信息方面被证明非常有效,但关于如何应用于最大化聚类性能的研究很少。大多数现有的方法直接使用GCN作为特征提取器,其中每个卷积层与投影层耦合,使得堆叠多个层和训练深度模型变得困难。事实上,ARGE[潘等人,2018]和MGAE[王等人,2017]使用浅两层和三层GCN分别在他们的模型,只考虑每个节点的邻居在两个或三个跳,因此可能不足以捕获全球集群的大型图形结构。此外,所有这些方法都使用了一个固定的模型,而忽略了真实世界的图的多样性,从而导致性能的次优
为了解决这些问题,我们提出了一种自适应图卷积(AGC)方法的属性图聚类。
直觉是,相邻节点往往在同一集群中,如果同一集群中的节点具有相似的特征表示,聚类将变得更加容易。
为此,我们没有像GCN中那样堆叠许多层,而是设计了一个k阶图卷积,作为节点特征上的低通图滤波器,以获得平滑的特征表示,其中k可以使用簇内距离自适应地选择。
AGC由两个步骤组成:1)进行k阶图卷积运算,得到平滑的特征表示; 2)对学习到的特征进行谱聚类,对节点进行聚类。
AGC可以方便地使用高阶图卷积来捕获全局簇结构,并允许为不同的图选择一个合适的k。
2. related work
06这篇理论可以之后看看
<