IJCAI 22 CL-UGRL Multi-view Unsupervised Graph Representation Learning

本文探讨了一种图神经网络的视图增强方法,包括特征矩阵和邻接矩阵的增强策略。特征矩阵通过掩码权重较小的元素进行增强,类似GCA的思想。而邻接矩阵则通过拉普拉斯映射和指数函数学习自适应图结构。损失函数采用了两视图对比的方式,与MERIT相似。尽管如此,文章缺乏与主流方法如MERITGCAGRACEGraphCL等的对比,引发了作者对IJCAI会议质量的质疑。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

talk

这篇文章没找到 代码, 核心就是 两种视图增强的方法,损失和MERIT的很像,MERIT就是 GCA的infonce损失,因此这篇文章 创新很一般。有SUGRL那篇的作者 所以看了看
在这里插入图片描述

特征矩阵 aug

通过P 和 m来进行掩码,m掩码P中权重较小的,和GCA思想很像,不重要的丢弃
在这里插入图片描述

邻接矩阵aug

通过这个类似 拉普拉斯映射的 方法, 学得一个 sij。 再通过一个P参数 relu 再指数,形成新的 sij。类似于 自适应 图结构学习的那套
在这里插入图片描述
损失 又是 两个视图 对比 。 同样一个视图内对比,和MERIT 一模一样
在这里插入图片描述
tmd 文章对比方法 都没有 MERIT GCA GRACE GraphCL 。。。。。IJCAI这么水吗
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值