talk
这篇文章没找到 代码, 核心就是 两种视图增强的方法,损失和MERIT的很像,MERIT就是 GCA的infonce损失,因此这篇文章 创新很一般。有SUGRL那篇的作者 所以看了看
特征矩阵 aug
通过P 和 m来进行掩码,m掩码P中权重较小的,和GCA思想很像,不重要的丢弃
邻接矩阵aug
通过这个类似 拉普拉斯映射的 方法, 学得一个 sij。 再通过一个P参数 relu 再指数,形成新的 sij。类似于 自适应 图结构学习的那套
损失 又是 两个视图 对比 。 同样一个视图内对比,和MERIT 一模一样
tmd 文章对比方法 都没有 MERIT GCA GRACE GraphCL 。。。。。IJCAI这么水吗