# KNN的距离算法 使用的是欧氏距离 即算空间中点的距离 (根号下的 差的平方和)
# 要注意的是knn算法是需要做 标准化处理的
# API:(参数:n_neighbors=5)默认使用5个邻居 邻居的数量对算法的结果有影响 数量越大则要判断的点越多
from sklearn.neighbors import KNeighborsClassifier
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
# 网格参数最优搜索
from sklearn.model_selection import GridSearchCV
def knncls():
data = pd.read_csv("./data/facebook/train.csv")
# 处理数据
print(data.head(10))
# 缩小数据集
# 使用query查询数据筛选数据 输入字符串 用& 表示与
data = data.query("x>1.0 & x<1.25 &y>2.5 & y <2.75")
# 处理时间戳 转换成年月日 时分秒
# 调用pd.to_datatime() 可以吧时间戳转换为时间年月日
time_values = pd.to_datetime(data['time'])
print(time_values)
# 构造更多的特征 年月都一致 不再使用年月
# 获取参数 使用打他timeindex
time_values = pd.DatetimeIndex(time_values)
data['day'] = time_values.day
data['hour'] = time_values.hour
data['weekday'] = time_values.weekday
data['weekday'] = time_values.week
机器学习 使用交叉验证为KNN调优参数
最新推荐文章于 2025-05-14 16:33:10 发布