线性代数之 矩阵求导(2)标量函数求导基本法则与公式

前言

上篇矩阵求导(1)解决了求导时的布局问题,也是矩阵求导最基础的求导方法。现在进入矩阵求导的核心:基本求导法则与基本公式。

基本约定

本篇只涉及标量对向量、矩阵的求导,默认向量是列向量。

标量对向量求导

基本法则

常数求导:
∂ c 0 ∂ x = 0 n × 1 \frac {\partial c_0}{\partial x}=0^{n\times 1} xc0=0n×1
常数求导很简单,在此不证明。


线性变换:
∂ ( c 1 f ( x ) + c 2 g ( x ) ) ∂ x = c 1 ∂ f ∂ x + c 2 ∂ g ∂ x \frac {\partial (c_1f(x)+c_2g(x))}{\partial x}=c_1\frac {\partial f}{\partial x}+c_2\frac {\partial g}{\partial x} x(c1f(x)+c2g(x))=c1xf+c2xg
证明:
∂ ( c 1 f ( x ) + c 2 g ( x ) ) ∂ x = [ ∂ ( c 1 f ( x ) + c 2 g ( x ) ) ∂ x 1 ∂ ( c 1 f ( x ) + c 2 g ( x ) ) ∂ x 2 … ∂ ( c 1 f ( x ) + c 2 g ( x ) ) ∂ x n ] = [ c 1 ∂ ( f ( x ) ) ∂ x 1 c 1 ∂ ( f ( x ) ) ∂ x 2 … c 1 ∂ ( f ( x ) ) ∂ x n ] + [ c 2 ∂ ( g ( x ) ) ∂ x 1 c 2 ∂ ( g ( x ) ) ∂ x 2 … c 2 ∂ ( g ( x ) ) ∂ x n ] = c 1 ∂ f ∂ x + c 2 ∂ g ∂ x \frac {\partial (c_1f(x)+c_2g(x))}{\partial x}= \begin{bmatrix} \frac {\partial (c_1f(x)+c_2g(x))}{\partial x_1}\\ \frac {\partial (c_1f(x)+c_2g(x))}{\partial x_2}\\ \dots \\ \frac {\partial (c_1f(x)+c_2g(x))}{\partial x_n} \end{bmatrix} \\ \quad \\ =\begin{bmatrix} \frac {c_1\partial (f(x))}{\partial x_1}\\ \frac {c_1\partial (f(x))}{\partial x_2}\\ \dots \\ \frac {c_1\partial (f(x))}{\partial x_n} \end{bmatrix} + \begin{bmatrix} \frac {c_2\partial (g(x))}{\partial x_1}\\ \frac {c_2\partial (g(x))}{\partial x_2}\\ \dots \\ \frac {c_2\partial (g(x))}{\partial x_n} \end{bmatrix} \\ \quad \\ = c_1\frac {\partial f}{\partial x}+c_2\frac {\partial g}{\partial x} x(c1f(x)+c2g(x))=x1(c1f(x)+c2g(x))x2(c1f(x)+c2g(x))xn(c1f(x)+c2g(x))=x1c1(f(x))x2c1(f(x))xnc1(f(x))+x1c2(g(x))x2c2(g(x))xnc2(g(x))=c1xf+c2xg
加减法就不细说了,和普通函数求导是一样的,也很好证。


乘积:
∂ ( f ( x ) g ( x ) ) ∂ x = ∂ f ( x ) ∂ x g ( x ) + f ( x ) ∂ g ( x ) ∂ x \frac {\partial (f(x)g(x))}{\partial x}= \frac {\partial f(x)}{\partial x}g(x)+f(x)\frac {\partial g(x)}{\partial x} x(f(x)g(x))=xf(x)g(x)+f(x)xg(x)
证明:
∂ f ( x ) g ( x ) ∂ x = [ ∂ f g ∂ x 1 ∂ f g ∂ x 2 … ∂ f g ∂ x n ] = [ ∂ f ∂ x 1 g + f ∂ g ∂ x 1 ∂ f ∂ x 2 g + f ∂ g ∂ x 2 … ∂ f ∂ x n g + f ∂ g ∂ x n ] = [ ∂ f ∂ x 1 ∂ f ∂ x 2 … ∂ f ∂ x n ] g + f [ ∂ g ∂ x 1 ∂ g ∂ x 2 … ∂ g ∂ x n ] = ∂ f ( x ) ∂ x g ( x ) + f ( x ) ∂ g ( x ) ∂ x \frac {\partial f(x)g(x)}{\partial x} = \begin{bmatrix} \frac {\partial fg}{\partial x_1} \\ \frac {\partial fg}{\partial x_2} \\ \dots \\ \frac {\partial fg}{\partial x_n} \\ \end{bmatrix}\\ \quad \\ = \begin{bmatrix} \frac {\partial f}{\partial x_1}g+ f\frac {\partial g}{\partial x_1}\\ \frac {\partial f}{\partial x_2}g+ f\frac {\partial g}{\partial x_2}\\ \dots \\ \frac {\partial f}{\partial x_n}g+ f\frac {\partial g}{\partial x_n}\\ \end{bmatrix}\\ \quad \\ = \begin{bmatrix} \frac {\partial f}{\partial x_1} \\ \frac {\partial f}{\partial x_2} \\ \dots \\ \frac {\partial f}{\partial x_n} \\ \end{bmatrix}g + f\begin{bmatrix} \frac {\partial g}{\partial x_1} \\ \frac {\partial g}{\partial x_2} \\ \dots \\ \frac {\partial g}{\partial x_n} \\ \end{bmatrix}\\ \quad \\ = \frac {\partial f(x)}{\partial x}g(x)+f(x)\frac {\partial g(x)}{\partial x} xf(x)g(x)=x1fgx2fgxnfg=x1fg+fx1gx2

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值