线性代数之 矩阵求导(3)标量、向量求导的快速记忆

本文介绍了如何快速记忆线性代数中矩阵求导的规则,特别是针对标量对向量、向量对向量的求导。提出了分子布局和后置变量求导的概念,强调在求导过程中系数的位置和转置规则。通过实例解析了包含多个变量的函数求导,并提供了与传统分母布局的对比,帮助理解这一方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

上一次记录了矩阵求导的基本法则和公式,并且大部分给出了基于矩阵乘法的证明(本质证明)。然而这样记忆矩阵求导还是比较困难的。

这里给出一种作者使用的快速记忆矩阵求导的方法。

注意:该方法仅是作者个人记忆用方法,公式推导并不严格符合数学规范

基本约定

默认向量是列向量。只涉及标量对向量,向量对向量的求导。

本次矩阵求导默认使用分子布局,即分子不变分母转置。

引例

标量对标量求导

我们都知道下面函数的求导:
f ( x 0 ) = a x 0 2 + b x 0 + c f ′ ( x 0 ) = 2 a x 0 + b f(x_0)=ax_0^2+bx_0+c \\ f'(x_0)=2ax_0+b f(x0)=ax02+bx0+cf(x0)=2ax0+b
其中,多项式的系数写在自变量的前面。我们把这种表示叫做变量后置。对于标量而言,变量前置后置是没有区别的。

标量对向量求导

先看一个分母布局的例子:
f ( x ) = a T x ∂ ( a T x ) T / ∂ x = a f(x)=a^Tx \\ \quad \\ \partial (a^Tx)^T/\partial x= a f(x)=aTx(aTx)T/x=a
a T x a^Tx aTx这个标量对列向量求导,得到列向量 a a a。但是结果出现了 a T a^T aT的转置,不好记。

而从直观的角度上, ∂ ( a T x ) / ∂ x = a T \partial (a^Tx)/\partial x= a^T (aTx)/x=aT这种类似标量对标量求导的表示更符合我们的思维直觉。

分子布局刚好符合这种直觉:
f ( x ) = a T x ∂ ( a T x ) / ∂ x T = a T f(x)=a^Tx \\ \quad \\ \partial (a^Tx)/\partial x^T= a^T f(x)=aTx(aTx)/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值