pytorch 图像预处理 transforms 中的常用函数

文章介绍了图像处理中的一些关键函数,如Resize、CenterCrop、RandomCrop和RandomResizedCrop,主要用于图像尺寸变换和预处理。OpenCV的resize()函数用于按比例缩放图像,适应CNN输入需求。此外,还讨论了图像从像素矩阵向向量转换的重要性以及归一化操作的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

transforms中的常用函数:

Resize(Scale 已废弃,由 Resize 替代):实现图像的缩放(尺寸变换),通过按照比例缩放(放大、缩小)来得到想要的尺寸。
CenterCrop:以图片的中心往外裁剪一定 size 的图片;
RandomCrop:从随机位置开始裁剪图片;
RandomResizedCrop:将给定的 PIL 图像裁剪为随机大小和纵横比。(RandomSizedCrop 已废弃,由 RandomResizedCrop 取代);
ToPILImage:将 PIL Image 或 numpy.ndarray 转换成 tensor 再转成 PIL Image;
ToTensor:将原始的 PILImage 格式或者 numpy.array 格式的数据格式化为可被 pytorch 快速处理的张量类型。
Normalize:提供一个所有通道的均值(mean) 和方差(std),会将原始数据进行归一化,操作的数据格式是 Tensor;

图像缩放 resize() 函数

在 python 中,经常需要对图像进行缩放等预处理操作,OpenCV 库提供了 resize() 函数来实现图像的缩放(尺寸变换)。

个人感觉,resize() 是对图像进行缩放不是裁剪,通过按照比例缩放(放大、缩小)来得到想要的尺寸,然后再送入 CNN 中进行后续的操作。

在 Python 中,图形通常是以向量的形式保存并进行处理的。每个图像都是由许多个像素点构成的,每个像素点都是一个 0~255 的数值,用于表示像素点的颜色信息。黑白图像(灰度图)是通过二维向量(高度 × \times ×宽度)来表示,彩色图像是通过三维向量(高度 × \times ×宽度 × \times ×通道数,通道数为3保存着各个像素红色 Red 、绿色 Green 和蓝色 Blue 的量化数值)来表示。
向量将图像分解成一个个像素,每个向量元素记录着各个像素点的颜色信息,所以这个向量表达的是图片色彩的分布,反过来也可以根据向量包含的信息渲染出对应的图片。

原始的图像是由像素点构成的,需要将图像转为向量(矩阵)的形式才能输入到后续的 CNN 网络中,为了便于后续网络的计算需要将转成的向量固定成指定的尺寸,所以要进行大小调整,也就是通过 resize() 操作来对原始的图像进行缩放处理装换成指定的尺寸。

经过测试发现:不管原始图像的分辨率和 dpi 的值是否相同,通过 Scale 或者 Resize 缩放到相同尺寸的操作后都会将图像的分辨率改成相应的大小,且 dpi 值也变成同一大小。

Reference:

【一文详解】图片与向量的关系
深度学习(5)数据处理-resize
利用OpenCV的函数resize()实现图像的缩放(尺寸变换)
Python中图像的缩放 resize()函数的应用
用python Pillow库resize()方法进一步探究图像处理
图像数据处理

### 回答1: 在Pytorch中,图像预处理通常使用transforms模块来完成。以下是一些常见的图像预处理操作: 1. Resize:调整图像大小。 ``` transforms.Resize((height, width)) ``` 2. CenterCrop:在图像中心进行裁剪。 ``` transforms.CenterCrop(size) ``` 3. RandomCrop:在随机位置进行裁剪。 ``` transforms.RandomCrop(size, padding=None, pad_if_needed=False, fill=0, padding_mode='constant') ``` 4. Normalize:对图像进行标准化处理。 ``` transforms.Normalize(mean, std) ``` 5. ToTensor:将数据类型转换为张量(Tensor)。 ``` transforms.ToTensor() ``` 6. RandomHorizontalFlip:随机水平翻转。 ``` transforms.RandomHorizontalFlip(p=0.5) ``` 7. RandomRotation:随机旋转。 ``` transforms.RandomRotation(degrees, resample=False, expand=False, center=None) ``` 这些操作可以通过组合使用来构建一个预处理管道。例如,以下代码将对图像进行中心裁剪、标准化和转换为张量: ``` transform = transforms.Compose([ transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) ``` ### 回答2: PyTorch是一种流行的机器学习框架,提供了丰富的图像预处理功能,便于处理和准备图像数据用于训练深度学习模型。 首先,PyTorch图像预处理的第一步通常是加载图像PyTorch提供了torchvision库,其中包括一些常用的数据集,如ImageFolder,可以方便地加载和处理图像数据。 接下来,预处理图像的常见步骤是将其转换为Tensor格式。PyTorch图像表示为张量,可以通过使用transforms.ToTensor()转换图像数据类型为torch.Tensor。这样可以使图像数据可以直接输入到神经网络中进行训练。 此外,图像预处理包括常见的数据增强方法,如随机裁剪、随机翻转、旋转和缩放等。这些数据增强方法有助于增加模型的泛化能力,提高模型对于不同样本的鲁棒性。可以使用transforms库提供的方法,如RandomCrop、RandomHorizontalFlip和RandomRotation等来实现这些数据增强操作。 另外,在进行图像预处理时,还可以进行归一化操作。这可以通过使用transforms.Normalize()方法,将图像的像素值进行标准化处理,使其符合模型训练的要求。标准化会根据图像像素的均值和标准差进行处理。 最后,为了方便创建可以训练的数据集,可以使用torch.utils.data.DataLoader将预处理后的图像加载为批量数据。DataLoader还提供了一些常用的功能,如数据随机打乱和并行加载等。 综上所述,PyTorch提供了丰富的图像预处理功能,通过transforms库以及相关的方法,可以将图像数据加载、转换为张量、进行数据增强和标准化等操作,方便地准备和处理图像数据以供深度学习模型使用。 ### 回答3: PyTorch图像预处理是一系列的操作,用于将输入的图像数据转换为适合神经网络训练的格式。下面将介绍几种常见的PyTorch图像预处理方法。 1. 图像变换(Image Transformations):这是最基本的图像预处理步骤,包括调整图像大小,裁剪、缩放、旋转等操作。可以使用torchvision库中的transforms模块来实现,例如使用Resize函数调整图像大小,使用RandomCrop函数进行随机裁剪。 2. 数据增强(Data Augmentation):数据增强是指通过对原始图像进行一系列变换来生成新的训练样本,旨在扩大训练集规模和增加数据的多样性,以提高模型的泛化能力。常用的数据增强操作包括随机翻转、随机旋转、随机裁剪等。可以使用torchvision库中的transforms模块的RandomHorizontalFlip、RandomVerticalFlip、RandomRotation、RandomCrop等函数来实现。 3. 标准化(Normalization):标准化是将图像的像素值进行归一化处理,使其符合神经网络的输入要求。常用的标准化方法是将像素值减去均值,然后除以标准差。可以使用torchvision库中的transforms模块的Normalize函数来实现。 4. 数据加载(Data Loading):在PyTorch中,可以使用torchvision库中的datasets模块来加载图像数据集。datasets模块提供了一些常用图像数据集,如CIFAR-10、ImageNet等。加载图像数据集时,可以使用transforms参数来指定需要进行的图像预处理操作。 5. 批量处理(Batch Processing):在神经网络训练过程中,通常会将训练数据划分为小批量进行训练,以提高运算效率。可以使用torch.utils.data.DataLoader模块中的DataLoader函数来进行批量处理。 总结起来,PyTorch图像预处理包括图像变换、数据增强、标准化、数据加载和批量处理等操作,通过这些操作可以将原始图像数据转换为适合神经网络训练的格式。这些预处理操作可以提高模型的训练效果和泛化能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值