1. 分类和回归的区别
在本质上是一样的,都是针对一个输入,做出一个输出预测,区别在于输出变量的类型。
定性输出称为分类,或者说是离散变量预测,给定一个新的模式,推断它所对应的类别,如A,B类;
定量输出称为回归,或者说是连续变量预测,给定一个新的模式,推断它所输出的值(实数)。
煮个栗子:
预测明天的气温是多少度,可能是有一个y = ax+b 的函数,这是一个回归任务;
预测明天是阴、晴、雨、雪,这就是一个分类任务。
特性 | 分类 | 回归 |
---|---|---|
输出类型 | 离散数据 | 连续数据 |
目的 | 寻找决策边界 | 找到最优拟合 |
评价方法 | 精度(accuracy)、混淆矩阵 | SSE(sum of square errors)或拟合优度 |
分类模型可将回归模型的输出离散化,回归模型也可以将分类模型的输出连续化:
再煮几个栗子:
- Logistic Regression 和 Linear Regression:
- Linear Regression:输出一个标量 wx+b ,这是一个连续值,可以用来处理回归问题;
- Logistic Regression:把上面的wx+b 通过 sigmoid 函数映射到(0,1)上,并划分一个阈值,大于阈值的分为一类,小于等于的分为另一类,就可以用来处理二分类问题
- 更进一步:对于N分类问题,则是先得到 N 组 w 不同的 wx+b,然后归一化,(如用softmax函数),最后变成 N 个类上的概率,就可以处理多分类问题
参考来源:
分类与回归区别是什么?
分类与回归的区别