数据挖掘之——一些概念/原理区分

本文解析了机器学习中分类与回归的基本概念及其主要区别。通过对比输出类型、目的及评价方法等特性,阐述了这两种任务的不同应用场景。同时,还举例说明如何使用Logistic Regression和Linear Regression来解决实际问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 分类和回归的区别

在本质上是一样的,都是针对一个输入,做出一个输出预测,区别在于输出变量的类型。

定性输出称为分类,或者说是离散变量预测,给定一个新的模式,推断它所对应的类别,如A,B类;
定量输出称为回归,或者说是连续变量预测,给定一个新的模式,推断它所输出的值(实数)。

煮个栗子:
预测明天的气温是多少度,可能是有一个y = ax+b 的函数,这是一个回归任务;
预测明天是阴、晴、雨、雪,这就是一个分类任务。

特性分类回归
输出类型离散数据连续数据
目的寻找决策边界找到最优拟合
评价方法精度(accuracy)、混淆矩阵SSE(sum of square errors)或拟合优度

分类模型可将回归模型的输出离散化,回归模型也可以将分类模型的输出连续化:

再煮几个栗子:

  1. Logistic Regression 和 Linear Regression:
    1. Linear Regression:输出一个标量 wx+b ,这是一个连续值,可以用来处理回归问题;
    2. Logistic Regression:把上面的wx+b 通过 sigmoid 函数映射到(0,1)上,并划分一个阈值,大于阈值的分为一类,小于等于的分为另一类,就可以用来处理二分类问题
    3. 更进一步:对于N分类问题,则是先得到 N 组 w 不同的 wx+b,然后归一化,(如用softmax函数),最后变成 N 个类上的概率,就可以处理多分类问题

参考来源:
分类与回归区别是什么?
分类与回归的区别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值