开放集领域自适应OSDA(十六):Open Set Domain Adaptation via Joint Alignment and Category Separation论文原理

本文提出了一种新的开放集域适应(OSDA)方法——联合对齐和类别分离(JACS),它能有效识别未知样本并保持已知类别的分类性能。JACS通过学习共享特征空间,减小已知类分布差异,同时最大化已知与未知类别的距离。实验表明,JACS在多个基准数据集上优于现有方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

  • 文章来自2021年的TNNLS
  • 本文是本人开放集领域自适应OSDA系列论文的第16篇,所有系列论文的相关代码在https://github.com/CtrlZ1/Domain-Adaptation-Algorithms,希望各位大佬们不吝点赞,给个Star哦~

摘要

  • 流行的域适应方法适用于假定源域和目标域共享相同数据类别的近集场景。然而,在现实环境中,这一假设经常被违背,因为目标域通常包含源域中不存在的类别样本。这个设置被称为开放集域适应(OSDA)。大多数现有的领域适应方法在这种情况下都不能很好地工作。在本文中,我们提出了一种有效的OSDA方法,命名为联合对齐和类别分离(JACS)。具体而言,JACS学习了一个潜在的共享空间,在该空间中,已知类跨域特征分布的边缘和条件发散得到缓解(联合对齐),已知类和未知类之间的分布差异被放大
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CtrlZ1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值