python简单可视化

该博客通过Python的数据处理库pandas、matplotlib和seaborn,对电影评分数据进行分析。首先读取并整合了推荐系统和电影标题数据,接着展示了电影评分的平均值和频数,排名前五的电影。然后,使用seaborn的distplot进行密度分布分析,观察了评分计数的分布情况。最后,通过数据透视表创建了用户对电影的评分矩阵,揭示了用户对不同电影的评价情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
df = pd.read_csv('Recommendation System.csv')
df.head()
0505881250949
001725881250949
101331881250949
21962423881250949
31863023891717742
4223771878887116
df.columns = (['user_id','item_id',"rating","timestamp"])
df.head()
user_iditem_idratingtimestamp
001725881250949
101331881250949
21962423881250949
31863023891717742
4223771878887116
movie_titles = pd.read_csv("Movie_Id_Titles")
movie_titles.head()
item_idtitle
01Toy Story (1995)
12GoldenEye (1995)
23Four Rooms (1995)
34Get Shorty (1995)
45Copycat (1995)
df = pd.merge(df,movie_titles,on='item_id')  #类似于inner join
df.sort_values('item_id').head()
user_iditem_idratingtimestamptitle
393730814887736532Toy Story (1995)
424789315874827725Toy Story (1995)
424633613877759342Toy Story (1995)
424530315879466966Toy Story (1995)
424488614876031433Toy Story (1995)
df.head()
user_iditem_idratingtimestamptitle
001725881250949Empire Strikes Back, The (1980)
12131725878955442Empire Strikes Back, The (1980)
2921724875653271Empire Strikes Back, The (1980)
3771723884752562Empire Strikes Back, The (1980)
41941723879521474Empire Strikes Back, The (1980)
df.groupby("title")['rating'].mean().sort_values(ascending=False).head()    #排名前五的电影
title
Marlene Dietrich: Shadow and Light (1996)     5.0
Prefontaine (1997)                            5.0
Santa with Muscles (1996)                     5.0
Star Kid (1997)                               5.0
Someone Else's America (1995)                 5.0
Name: rating, dtype: float64
df.groupby("title")['rating'].count().sort_values(ascending=False).head()   #等级评论前五的电影
title
Star Wars (1977)             583
Contact (1997)               509
Fargo (1996)                 508
Return of the Jedi (1983)    507
Liar Liar (1997)             485
Name: rating, dtype: int64
ratings = pd.DataFrame(df.groupby("title")['rating'].mean())
ratings.head()
rating
title
'Til There Was You (1997)2.333333
1-900 (1994)2.600000
101 Dalmatians (1996)2.908257
12 Angry Men (1957)4.344000
187 (1997)3.024390
ratings["rating_counts"]= pd.DataFrame(df.groupby("title")['rating'].count())
ratings.head()
ratingrating_counts
title
'Til There Was You (1997)2.3333339
1-900 (1994)2.6000005
101 Dalmatians (1996)2.908257109
12 Angry Men (1957)4.344000125
187 (1997)3.02439041

seaborn的displot()集合了matplotlib的hist()与核函数估计kdeplot的功能,增加了rugplot分布观测条显示与利用scipy库fit拟合参数分布的新颖用途。

核密度估计是在概率论中用来估计未知的密度函数,属于非参数检验方法之一。由于核密度估计方法不利用有关数据分布的先验知识,对数据分布不附加任何假定,是一种从数据样本本身出发研究数据分布特征的方法,因而,在统计学理论和应用领域均受到高度的重视。

sns.distplot(ratings["rating_counts"])
<matplotlib.axes._subplots.AxesSubplot at 0x2a6bc5a3710>

在这里插入图片描述

# plt.figure(figsize=(20,10))
sns.distplot(ratings["rating"],bins=50)  #分箱
<matplotlib.axes._subplots.AxesSubplot at 0x2a6bcda9da0>

在这里插入图片描述

sns.distplot( (ratings['rating']*ratings['rating_counts'] ) )
<matplotlib.axes._subplots.AxesSubplot at 0x2a6bcec49b0>

在这里插入图片描述

plt.figure(figsize=(10,7))
sns.jointplot(x='rating',y="rating_counts",data=ratings,alpha=.5)

在这里插入图片描述

df.head()
user_iditem_idratingtimestamptitle
001725881250949Empire Strikes Back, The (1980)
12131725878955442Empire Strikes Back, The (1980)
2921724875653271Empire Strikes Back, The (1980)
3771723884752562Empire Strikes Back, The (1980)
41941723879521474Empire Strikes Back, The (1980)

数据透视表:

https://www.cnblogs.com/Yanjy-OnlyOne/p/11195621.html

movie_mat = df.pivot_table(values='rating',index='user_id',columns = 'title')
movie_mat.head()
title'Til There Was You (1997)1-900 (1994)101 Dalmatians (1996)12 Angry Men (1957)187 (1997)2 Days in the Valley (1996)20,000 Leagues Under the Sea (1954)2001: A Space Odyssey (1968)3 Ninjas: High Noon At Mega Mountain (1998)39 Steps, The (1935)...Yankee Zulu (1994)Year of the Horse (1997)You So Crazy (1994)Young Frankenstein (1974)Young Guns (1988)Young Guns II (1990)Young Poisoner's Handbook, The (1995)Zeus and Roxanne (1997)unknownÁ köldum klaka (Cold Fever) (1994)
user_id
0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
1NaNNaN2.05.0NaNNaN3.04.0NaNNaN...NaNNaNNaN5.03.0NaNNaNNaN4.0NaN
2NaNNaNNaNNaNNaNNaNNaNNaN1.0NaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
3NaNNaNNaNNaN2.0NaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
4NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN

5 rows × 1664 columns

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值