HTML和CSS学习笔记part4--html乱码

本文深入探讨了HTML5中出现乱码的原因,解释了字符集如ASCII、ISO-8859-1、GBK、UTF-8等的作用,并提供了防止乱码的方法,包括正确设置meta标签来指定网页编码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

html5乱码问题
1、为什么会出现乱码?
因为计算机的存储字符是通过二进制来存储,必定涉及到编码(字符转换成二进制的过程)和解码(二进制转换为字符的过程)的问题。比如说,计算机在编码时用到的格式是A,但是在解码过程却用到了B格式来解码,这样就会出现乱码问题。

2、字符集
编码和解码所采用的规则叫做字符集
常见的字符集主要有一下几种
ASCII 美国标准字符集格式 采用7位存储 一共可以存储128个字符
ISO-8859-1 欧洲标准字符集格式 采用8位存储 一共可以存储256个字符
GBK、GB2312 国标字符集格式 中文系统默认采用的是GB2312
UTF-8 万国码 国际标准码
ANSI 自动以系统的默认编码来保存文件

3、如何防止出现乱码的现象?
编写代码的过程中使用规定编码格式 告诉浏览器网页所采用的编码字符集
meta标签用来设置网页的一些元数据 字符集 简介 关键字等等
meta是一个自结束标签

例如规定编码格式是utf-8

资源下载链接为: https://pan.quark.cn/s/140386800631 通用大模型文本分类实践的基本原理是,借助大模型自身较强的理解推理能力,在使用时需在prompt中明确分类任务目标,并详细解释每个类目概念,尤其要突出类目间的差别。 结合in-context learning思想,有效的prompt应包含分类任务介绍及细节、类目概念解释、每个类目对应的例子待分类文本。但实际应用中,类目样本较多易导致prompt过长,影响大模型推理效果,因此可先通过向量检索缩小范围,再由大模型做最终决策。 具体方案为:离线时提前配置好每个类目的概念及对应样本;在线时先对给定query进行向量召回,再将召回结果交给大模型决策。 该方法不更新任何模型参数,直接使用开源模型参数。其架构参考GPT-RE并结合相关实践改写,加入上下文学习以提高准确度,还使用BGE作为向量模型,K-BERT提取文本关键词,拼接召回的相似例子作为上下文输入大模型。 代码实现上,大模型用Qwen2-7B-Instruct,Embedding采用bge-base-zh-v1.5,向量库选择milvus。分类主函数的作用是在向量库中召回相似案例,拼接prompt后输入大模型。 结果方面,使用ICL时accuracy达0.94,比bert文本分类的0.98低0.04,错误类别6个,处理时添加“家居”类别,影响不大;不使用ICL时accuracy为0.88,错误58项,可能与未修改prompt有关。 优点是无需训练即可有较好结果,例子优质、类目界限清晰时效果更佳,适合围绕通用大模型api打造工具;缺点是上限不高,仅针对一个分类任务部署大模型不划算,推理速度慢,icl的token使用多,用收费api会有额外开销。 后续可优化的点是利用key-bert提取的关键词,因为核心词语有时比语意更重要。 参考资料包括
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值