对于nick教授的OpenFLow文章的理解

本文探讨了Nick教授等人如何通过OpenFlow解决网络设备封闭性和实验环境难题,提出基于以太网交换机的流表概念,聚焦于如何在实验室规模实现网络编程与实验验证。OpenFlow的初衷在于创建一个可编程网络环境,以简化协议测试。核心内容包括流表结构、转发机制及面临的挑战,如设备闭源和硬件限制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

之前提到过,nick教授等人提出的OpenFlow的初衷就是能够自己搭建一个网络,用于目前实验过程中对于协议的一些认证等等提供方便,在文章的摘要当中,nick等人提高,openflow基于的是以太网的交换机,并且提出了流表的概念(具体结构将会在后面提到),与此同时还包括增删流表项的一些标准化接口。
文章的第一部分讲的是THE NEED FOR PROGRAMMABLE NETWORKS,也就是目前对于可编程网络的这种需求,首先提到的就是一些研究人员对于网络设备的安装、协议的安装的庞大性的不满,因为他们所提出的协议也好、算法也好几乎没有用武之地,没有现成的网络环境来测试他们的想法,也是我们提到过的网络的闭源环境以及商家对于设备的私有化。
正所谓想要什么就去做什么,当时参与网络的大牛就在努力尝试一种可以编程的网络,所谓可编程就是所说的我们可以自己定义网络,通过可以编程的交换机和路由器,分配属于自己的一块网络以及资源,这样就可以进行协议的验证试验,但是这并不是nick教授关心的,因为这是一个长远的目标,他所想的就是能不能先搞出一个小的网络,哪怕只在斯坦福大学计算机系和通信系这两栋大楼所覆盖的网络,用于他们日常实验就足够。其实只要找到方法,扩展到其他范畴就只是时间问题了。
Nick等人没有没有采取的方法就是说服一些网络设备知名厂商去为他们提供一些可编程、开放的设备,这样其实并不现实,商用的路由器、交换机通常不提供开放的软件平台,也就是我们之前提到的闭源性,商业组网通常隐藏内部所有细节,仅提供功能很少的外部接口(这个借口小到只能做包的转发功能),并且不同的厂商之间网络设备的内部架构也是不同的。
虽然有一些已知存在的开放平台,但是性能和端口都不是nick想要的,再就是现有平台的专门的硬件处理线路不适合大学的布线柜,下面这幅图就生动体现了nick等人对于openflow架构的想法
在这里插入图片描述

针对这幅图我说一下我对于openflow的理解,这幅图讲的是关于openflow交换机所定义的范围。Openflow交换机中由两部分组成,第一部分就是安全通道,他通过openflow 的协议与我们的PC机也就是控制器相连,另一部分是流表,具体流表的结构后面会介绍到,并且这里所说的流是一个广泛的概念,可以是各种的数据包统称为流。Openflow交换机必须有以下几个基本功能,第一、交换机可以将此流的数据包转发到一个或者多个给定的端口。第二、封装流的数据包并将其转发给控制器。第三、删除流的数据包。
流表项的构成主要有以下三个字段
在这里插入图片描述

后面的文章就来详细的讲讲流表以及openflow中到底是怎么进行流的转发的

资源下载链接为: https://pan.quark.cn/s/140386800631 通用模型文本分类实践的基本原理是,借助模型自身较强的理解推理能力,在使用时需在prompt中明确分类任务目标,并详细解释每个类目概念,尤其要突出类目间的差别。 结合in-context learning思想,有效的prompt应包含分类任务介绍及细节、类目概念解释、每个类目对应的例子待分类文本。但实际应用中,类目样本较多易导致prompt过长,影响模型推理效果,因此可先通过向量检索缩小范围,再由模型做最终决策。 具体方案为:离线时提前配置好每个类目的概念及对应样本;在线时先对给定query进行向量召回,再将召回结果交给模型决策。 该方法不更新任何模型参数,直接使用开源模型参数。其架构参考GPT-RE并结合相关实践改写,加入上下文学习以提高准确度,还使用BGE作为向量模型,K-BERT提取文本关键词,拼接召回的相似例子作为上下文输入模型。 代码实现上,模型用Qwen2-7B-Instruct,Embedding采用bge-base-zh-v1.5,向量库选择milvus。分类主函数的作用是在向量库中召回相似案例,拼接prompt后输入模型。 结果方面,使用ICL时accuracy达0.94,比bert文本分类的0.98低0.04,错误类别6个,处理时添加“家居”类别,影响不;不使用ICL时accuracy为0.88,错误58项,可能与未修改prompt有关。 优点是无需训练即可有较好结果,例子优质、类目界限清晰时效果更佳,适合围绕通用模型api打造工具;缺点是上限不高,仅针对一个分类任务部署模型不划算,推理速度慢,icl的token使用多,用收费api会有额外开销。 后续可优化的点是利用key-bert提取的关键词,因为核心词语有时比语意更重要。 参考资料包括
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值