Python3 OpenCV调用摄像头进行实时人脸识别

本文档介绍了一个简单的Python项目,用于初学者进行人脸识别。项目利用Haarcascade_frontalface_alt.xml分类器进行人脸检测,并在摄像头视频流中实时显示识别结果。代码简洁易懂,按'q'键退出程序。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在最前

在Python与计算机视觉这个方向上,我只算个初学者,不会用一些复杂语法,所以代码写得比较简单。代码如有问题或有待进一步优化,请各位同学不吝指出。

项目使用了官方的Haar分类器haarcascade_frontalface_alt.xml进行人脸识别。

项目代码

import cv2
import matplotlib.pyplot as plt
import numpy as np
import time

# 图像显示
def show(image):
    plt.imshow(image)
    plt.axis('off')
    plt.show()

# 图像读取
def imread(path):
    image=cv2.imread(path)
    image=cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    return image

# 人脸识别与绘制矩形框
def facedetect(image):
    dector=cv2.CascadeClassifier('haarcascade_frontalface_alt.xml')
    rects=dector.detectMultiScale(image, scaleFactor=1.1, minNeighbors=20, minSize=(10,10), flags=cv2.CASCADE_SCALE_IMAGE)
    for (x,y,w,h) in rects:
        cv2.rectangle(image, (x,y), (x+w,y+h), (0,255,0), 2)
    return image

# 调用摄像头进行人脸识别
def videoRecognition(count=10):
    cap=cv2.VideoCapture(0)
    while True:
        while not cap.isOpened(): # 处理摄像头未正常读取的情况
            time.sleep(1) # 延时1s后再次尝试
            cap.open()
            count=count-1
            if count<=0:
                return False
        ret,frame=cap.read()
        image=facedetect(frame)
        cv2.imshow('where_is_my_face',image)
        if cv2.waitKey(1) & 0xff == ord('q'):
            break
    cap.release
    cv2.destroyAllWindows()
    return True

使用时,直接调用videoRecognition即可:

videoRecognition()

项目演示

在这里插入图片描述
按下Q键退出。

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

乔卿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值