pytorch(一): 回归

本文作为PyTorch系列的第一篇,主要介绍了如何使用PyTorch构建和训练回归模型,涵盖了基本的神经网络架构和训练流程,适合机器学习初学者。通过实例展示了从数据预处理到模型训练的全过程,并分享了运行结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import torch
import torch.nn.functional as f
import matplotlib.pyplot as plt
from torch.autograd import Variable

# 建造数据集
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)
y = pow(x, 2) + 0.2*torch.rand(x.size())
x, y = Variable(x), Variable(y)  # 将x,y转化为变量

# 建造神经网络
class Net(torch.nn.Module):  # 传入神经网络模块
    def __init__(self, n_feature, n_hidden, n_output):
        super(Net, self).__init__()
        self.hidden = torch.nn.Linear(n_feature, n_hidden)
        self.predict = torch.nn.Linear(n_hidden, n_output)

    def forward(self, x):
        x = f.relu(self.hidden(x))
        x = self.predict(x)
        return x


net = Net(n_feature=1, n_hidden=10, n_output=1)


# 训练神经网络并且将其可视化
optimizer = torch.optim.SGD(net.parameters(), lr=0.6)  # 训练的工具
loss_func = torch.nn.MSELoss()
plt.ion()  # 与plt.ioff()配套使用,使绘图过程动态化
for i in range(200):  # 重复训练200次
    prediction = net(x)
    loss = loss_func(prediction, y)  # 预测值与实际值的误差
    optimizer.zero_grad()
    loss.backwa
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值