import torch
import torch.nn.functional as f
import matplotlib.pyplot as plt
from torch.autograd import Variable
# 建造数据集
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)
y = pow(x, 2) + 0.2*torch.rand(x.size())
x, y = Variable(x), Variable(y) # 将x,y转化为变量
# 建造神经网络
class Net(torch.nn.Module): # 传入神经网络模块
def __init__(self, n_feature, n_hidden, n_output):
super(Net, self).__init__()
self.hidden = torch.nn.Linear(n_feature, n_hidden)
self.predict = torch.nn.Linear(n_hidden, n_output)
def forward(self, x):
x = f.relu(self.hidden(x))
x = self.predict(x)
return x
net = Net(n_feature=1, n_hidden=10, n_output=1)
# 训练神经网络并且将其可视化
optimizer = torch.optim.SGD(net.parameters(), lr=0.6) # 训练的工具
loss_func = torch.nn.MSELoss()
plt.ion() # 与plt.ioff()配套使用,使绘图过程动态化
for i in range(200): # 重复训练200次
prediction = net(x)
loss = loss_func(prediction, y) # 预测值与实际值的误差
optimizer.zero_grad()
loss.backwa
pytorch(一): 回归
最新推荐文章于 2023-06-03 21:15:00 发布