MLOPS:大数据/服务器下的大规模机器学习技术—流水线处理技术的简介(标准化/自动化/可复用化)、常用框架(Pipeline/TFX、Airflow/Beam/Kubeflow/MLflow、Fli

本文介绍了大数据和服务器环境下,机器学习流水线处理技术的重要性和应用,包括标准化、自动化和可复用化的概念。文章详细探讨了Pipeline/TFX、Airflow/Beam/Kubeflow/MLflow等常用框架,并通过实例展示了如何使用Airflow管理和调度机器学习模型。此外,还分享了基于OpenML、葡萄牙银行营销活动和mushrooms数据集的多个实战案例,利用pipeline和flaml进行模型选择与预测。

MLOPS:大数据/服务器下的大规模机器学习技术—流水线处理技术的简介(标准化/自动化/可复用化)、常用框架(Pipeline/TFX、Airflow/Beam/Kubeflow/MLflow、Flink/Kafka)之详细攻略

目录

流水线处理技术的简介

1、流水线处理技术的概述(标准化/自动化/可复用化)

流水线处理技术的常用框架和工具

T1、基于机器学习框架的流水线处理技术工具:Pipeline/TFX

T2、专用的流水线处理技术的机器学习框架:Airflow/Beam/Kubeflow/MLflow

Tool之Airflow:Airflow(管理-调度-监控数据处理工作流的平台/DAG)的简介(可管理和调度机器学习模型的训练和预测过程)、安装、使用方法之详细攻略

T3、通用的流水线处理技术框架:Flink/Kafka

流水线处理技术的实战案例

1、进阶案例

AutoML之flaml:基于OpenML数据集利用pipeline结合flaml框架(自动化选择最佳模型+重加载模型并推理)实现预测航班是否延误二分类案例

ML之pipeline:基于葡萄牙银行机构营销活动数据集(年龄/职业/婚姻/违约等)利用Pipeline框架(两种类型特征并行处理)+多种模型预测(分层抽样+调参交叉验证评估+网格搜索/随机搜索+模型推理)客户是否购买该银行的产品二分类案例

ML之Pipeline:基于mushrooms蘑菇数据集利用pipeline流水线处理(只适合所有数据类型统一为类别型)二分类预测评估(各种FE模块迭代测试对比)的案例应用实现代码


流水线处理技术的简介

1、流水线处理技术的概述(标准化/自动化/可复用化)</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值