MLOPS:大数据/服务器下的大规模机器学习技术—流水线处理技术的简介(标准化/自动化/可复用化)、常用框架(Pipeline/TFX、Airflow/Beam/Kubeflow/MLflow、Flink/Kafka)之详细攻略
目录
T1、基于机器学习框架的流水线处理技术工具:Pipeline/TFX
T2、专用的流水线处理技术的机器学习框架:Airflow/Beam/Kubeflow/MLflow
Tool之Airflow:Airflow(管理-调度-监控数据处理工作流的平台/DAG)的简介(可管理和调度机器学习模型的训练和预测过程)、安装、使用方法之详细攻略
AutoML之flaml:基于OpenML数据集利用pipeline结合flaml框架(自动化选择最佳模型+重加载模型并推理)实现预测航班是否延误二分类案例
ML之Pipeline:基于mushrooms蘑菇数据集利用pipeline流水线处理(只适合所有数据类型统一为类别型)二分类预测评估(各种FE模块迭代测试对比)的案例应用实现代码