给你一个只包含 ‘(’ 和 ‘)’ 的字符串,找出最长有效(格式正确且连续)括号子串的长度。
示例 1:
输入:s = "(()"
输出:2
解释:最长有效括号子串是 "()"
示例 2:
输入:s = ")()())"
输出:4
解释:最长有效括号子串是 "()()"
示例 3:
输入:s = ""
输出:0
提示:
0 <= s.length <= 3 * 104
s[i] 为 '(' 或 ')'
思路:
一段合法序列要满足的条件:
1."("数量 == ")"数量
2.序列的任意前缀满足 "("数量 >= ")"数量
1.当在某个位置上出现"("数量 < ")"数量
时,此时将这个位置设为分隔点。从这个点往后,重新统计和比较左右括号的数量;
一段合法序列是不会跨越分隔点的;
证明:
2.所以可以以“分隔点”来进行分段处理,在每一段中找到合法序列就尝试更新结果;
如何让每一个“(”和它对应的“)”匹配上?
使用栈;
在每一段中,遇到“(”就入栈,遇到“)”就看栈中是否有“(”,有就匹配上了;没有,那么这个位置就是分隔点,重新设置开始的位置。
匹配上了之后呢,如何更新结果?
因为在每个分隔点都是满足“(”数量<“)”数量的,所以在每一段中,“(”都是被消耗完的,不用担心栈上会遗留上一段的“(”;
对于每一段,每当匹配时,会有两种情况:
第一种:
第二种:
题解:cpp
class Solution {
public:
int longestValidParentheses(string s) {
stack<int> stk;
int res = 0;
for (int i = 0, start = -1; i < s.size(); i ++ ) {
if (s[i] == '(') stk.push(i);
else {
if (stk.size()) {
stk.pop();
if (stk.size()) {
res = max(res, i - stk.top());
} else {
res = max(res, i - start);
}
} else {
start = i;
}
}
}
return res;
}
};