leetcode 32. 最长有效括号

本文介绍了一种利用栈来解决寻找最长有效括号子串问题的方法。通过遍历字符串并利用栈记录左括号的位置,可以有效地找到最长的有效括号序列。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给你一个只包含 ‘(’ 和 ‘)’ 的字符串,找出最长有效(格式正确且连续)括号子串的长度。

示例 1:

输入:s = "(()"
输出:2
解释:最长有效括号子串是 "()"

示例 2:

输入:s = ")()())"
输出:4
解释:最长有效括号子串是 "()()"

示例 3:

输入:s = ""
输出:0

提示:

0 <= s.length <= 3 * 104
s[i] 为 '(' 或 ')'

思路:

一段合法序列要满足的条件:
1."("数量 == ")"数量
2.序列的任意前缀满足 "("数量 >= ")"数量

1.当在某个位置上出现"("数量 < ")"数量时,此时将这个位置设为分隔点。从这个点往后,重新统计和比较左右括号的数量;
一段合法序列是不会跨越分隔点的
证明:
在这里插入图片描述
2.所以可以以“分隔点”来进行分段处理,在每一段中找到合法序列就尝试更新结果;
如何让每一个“(”和它对应的“)”匹配上?
使用栈;
在每一段中,遇到“(”就入栈,遇到“)”就看栈中是否有“(”,有就匹配上了;没有,那么这个位置就是分隔点,重新设置开始的位置。

匹配上了之后呢,如何更新结果?
因为在每个分隔点都是满足“(”数量<“)”数量的,所以在每一段中,“(”都是被消耗完的,不用担心栈上会遗留上一段的“(”;

对于每一段,每当匹配时,会有两种情况:
第一种:
在这里插入图片描述
第二种:
在这里插入图片描述

题解:cpp

class Solution {
public:
    int longestValidParentheses(string s) {
        stack<int> stk;

        int res = 0;
        for (int i = 0, start = -1; i < s.size(); i ++ ) {
            if (s[i] == '(') stk.push(i);
            else {
                if (stk.size()) {
                    stk.pop();
                    if (stk.size()) {
                        res = max(res, i - stk.top());
                    } else {
                        res = max(res, i - start);
                    }
                } else {
                    start = i;
                }
            }
        }

        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值